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1
n 1988, a French artist named Alain Georgeot 
prepared an exhibition of 88 elephants. They 
were made of folded paper, each different, and 
each one an example of origami, the Japanese 
art of paper folding. An art exhibition de-

voted entirely to origami is rare; one devoted to elephants is  
extremely unusual; and one devoted entirely to origami  
elephants was entirely unprecedented.

A display of 88 paper elephants illustrates both the  
remarkable attraction origami has for some people—after all, 
how many people would take the time to fold 88 versions of 
the same thing?—and the remarkable versatility of the art. 
Georgeot’s collection of elephants represented only the tiniest 
fraction of the modern origami repertoire. Tens of thousands 
of paper designs exist for animals, plants, and objects, a 
regular abecedarium of subject matter. There are antelopes, 
birds, cars, dogs, elephants (of course), flowers and gorillas; 
horses, ibexes, jays, and kangaroos; lions, monkeys, nautiluses,  
octopi, parrots, quetzalcoatls, roses, sharks, trains, ukuleles, 
violinists, whelks, xylophones, yaks, and zebras, the last 
 complete with stripes.

Innumerable innovations have been wrought upon the 
basic theme of folded paper. There are action figures: birds 
that flap their wings, violinists who bow their violins, in-
flatable boxes, clapping monkeys, snapping jaws. There are  
paper airplanes that fly—one won an international contest—
and airplanes that don’t fly, but are replicas of famous  
aircraft: the space shuttle, the SR-71 Blackbird, and the  
venerable Sopwith Camel. In some models, a single piece of  
paper is folded into several figures (a bull, bullfighter, and 
cape, for example) and in others, many identical pieces of 

Introduction
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3Chapter 1: Introduction

paper are assembled into enormous multifaceted polyhe-
dra. If you can think of an object either natural or man- 
made, someone, somewhere, has probably folded an origami 
version.

The art of origami was originally Japanese, but the 88 
elephants and the tens of thousands of other designs come 
from all over the world. Many figures originated in Japan, of 
course, but the U.S.A., England, France, Germany, Belgium, 
Argentina, Singapore, Australia, and Italy are major centers 
of origami activity. The designs range from simple figures 
consisting of only two or three folds to incredibly complex “test 
pieces” requiring hours to fold. Most of these thousands of  
designs have one thing in common, however: Nearly all were  
invented in the last 50 years.

Thus, origami is both an old art and a young art. Its youth 
is somewhat surprising. After all, folded paper has been an art 
form for some 15 centuries. It is ancient; one would not expect 
98 percent of the innovation to come in the last 2 percent of the 
art’s existence! Yet it has. Fifty years ago, all of the different 
origami designs in the world could have been catalogued on 
a single typed sheet of paper, had anyone had the inclination 
to do so. No model would have run over about 20 or 30 steps. 
Most could be folded in a few minutes, even by a novice. This 
is no longer the case. Today, in books, journals, and personal 
archives, the number of recorded origami designs runs well into 
the thousands; the most sophisticated designs have hundreds 
of steps and take several hours for an experienced folder to 
produce. The past 60 years in Japan, and 40 years worldwide, 
have seen a renaissance in the world of origami and an accel-
eration of its evolution.

And this has happened in the face of stringent barriers. 
The traditional rules of origami—one sheet of paper, no cuts—
are daunting. It would appear that only the simplest abstract 
shapes are feasible with such rules. Yet over hundreds of years, 
by trial and error, two to three hundred designs were devel-
oped. These early designs were for the most part simple and 
stylized. Complexity and realism—insects with legs, wings, and 
antennae—were not possible until the development of special-
ized design methods in the latter part of the 20th century.

Although there are now many thousands of origami  
designs, there are not thousands of origami designers. In fact, 
there is only a handful of designers who have gone beyond 
basics, only a handful who can and do design sophisticated 
models. Although there is far more exchange of completed  
designs now than there used to be, there is not a similar  
exchange of design techniques.

© 2012 by Taylor & Francis Group, LLC
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This imbalance arises because it is much easier to describe 
how to replicate an origami figure than how to design one. 
Origami designs spread through publication of their folding 
sequence—a set of step-by-step instructions. The folding se-
quence, based on a simple code of dashed and dotted lines and 
arrows devised by the great Japanese master Akira Yoshizawa, 
transcends language boundaries and has led to the worldwide 
spread of origami.

While thousands of folding sequences have been published 
in books, magazines, and conference proceedings, a step-by-
step folding sequence does not necessarily communicate how 
the model was designed. The folding sequence is usually opti-
mized for ease of folding, not to show off design techniques or 
the structure of the model. In fact, some of the most enjoyable 
folding sequences are ones that obscure the underlying design 
of the model so that the appearance of the final structure comes 
as a surprise. “How to fold” is rarely “how to design.” Folding 
sequences are widespread, but relatively few of the design 
techniques of origami have ever been set down on paper.

Over the last 40 years I have designed some 500+ original 
figures. The most common question I am asked is, “How do you 
come up with your designs?” Throughout the history of origami, 
most designers have designed by “feel,” by an intuition of which 
steps to take to achieve a particular end. My own approach to 
design has followed what I suspect is a not uncommon pattern; 
it evolved over the years from simply playing around with the 
paper, through somewhat more directed playing, to systematic 
folding. Nowadays, when I set out to fold a new subject, I have 
a pretty good idea about how I’m going to go about folding it 
and can usually produce a fair approximation of my subject on 
the first try.

Hence the perennial question: How do you do that? The 
question is asked as if there were a recipe for origami design 
somewhere, a cookbook whose steps you could follow to reliably 
produce any shape you wanted from the square of paper. I don’t 
think of origami design as a cookbook process so much as a bag 
of tricks from which I select one or more in the design of a new 
model. Here is a base (a fundamental folding pattern) with six 
legs: I’ll use it to make a beetle. Here is a technique for adding 
a pair of points to an existing base: I’ll combine these to make 
wings. Some designers have deeper bags of tricks than others; 
some, like John Montroll, have a seemingly bottomless bag of 
tricks. I can’t really teach the way to design origami, for there 
is no single way to design, but what I can and will try to do in 
this book is to pass on some of the tricks from my bag. Origami 
design can indeed be pursued in a systematic fashion. There are 
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5Chapter 1: Introduction

now simple, codified mathematical and geometric techniques 
for developing a desired structure.

This book is a collection of those techniques. It is not a step-
by-step recipe book for design. Origami is, first and foremost, 
an art form, an expression of creativity, and it is the nature 
of creativity that it cannot be taught directly. It can, however, 
be developed through example and practice. As in other art 
forms, you can learn techniques that serve as a springboard 
for creativity.

The techniques of origami design that are described in 
this book are analogous to a rainbow of colors on an artist’s 
palette. You don’t need a broad spectrum, but while one can 
paint beautiful pictures using only black and white, the intro-
duction of other colors immeasurably broadens the scope of 
what is possible. And yet, the introduction of color itself does 
not make a painting more artistic; indeed, quite the opposite 
can happen. So it is with origami design. The use of sophisti-
cated design techniques—sometimes called “technical folding,” 
or origami sekkei—makes the resulting model neither artistic 
nor unartistic. But having a richer palette of techniques from 
which to choose can allow the origami artist to more fully  
express his or her artistic vision. That vision could include 
elements of the folding sequence: Does it flow naturally? Is 
the revelation of the finished form predictable or surpris-
ing? It could include elements of the finished form: Are the 
lines harmonious or jarring? Does the use of folded edges 
contribute to or detract from the appearance? Does the figure 
use paper efficiently or waste it? The aesthetic criteria to be  
addressed are chosen by the artist. Any given technique may 
contribute to some criteria (and perhaps degrade others). By 
learning a variety of design techniques, the origami artist can 
pick and choose to apply those techniques that best contribute 
to the desired effect.

These techniques are not always strict; they are sometimes 
more than suggestions, but less than commandments. In some 
cases, they are vague rules of thumb: “Beyond eight flaps, it 
is more efficient to use a middle flap.” But they can also be as 
precise as a mathematical equation. In recent years, origami 
has attracted the attention of scientists and mathematicians, 
who have begun mapping the “laws of nature” that underlie 
origami, and converting words, concepts, and images into math-
ematical expression. The scientific fields of computer science, 
number theory, and computational geometry support and il-
luminate the art of origami; even more, they provide still more 
powerful techniques for origami design that have resulted in 
further advances of the art in recent years. Many design rules 
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6 Origami Design Secrets, Second Edition

that on the surface apply to rather mundane aspects of fold-
ing, for example, the most efficient arrangements of points in a 
base, are actually linked to deep mathematical questions. Just 
a few of the subjects that bear on the process of origami design 
include the obvious ones of geometry and trigonometry, but also 
number theory, coding theory, the study of binary numbers, 
and linear algebra as well. Surprisingly, much of the theory is 
accessible and requires no more than high school mathematics 
to understand. I will, on occasion, bring out deeper connections 
to mathematics where they are relevant and interesting, and I 
will provide some mathematical derivations of important con-
cepts, but in most cases I will refrain from formal mathematical 
proofs. My emphasis throughout this work will be upon usable 
rules rather than mathematical formality.

As with any art, ability comes with practice, whether the 
art is origami folding or origami design. The budding origami 
designer develops his or her ability by designing and seeing the 
result. Design can start simply by modifying an existing fold. 
Make a change; see the result. The repeated practice builds 
circuits in the brain linking cause and effect, independent of 
formal rules. Many of today’s origami designers develop their 
folds by a process they often describe as intuitive. They can’t 
describe how they design: “The idea just comes to me.” But 
one can create pathways for intuition to take hold by starting 
with small steps of design. The great leap between following a 
path and making one’s own path arises from the development 
of an understanding of why: Why did the designer do it that 
way? Why does the first step start with a diagonal fold rather 
than a square fold? Why do the first creases hit the corners? 
Why, in another model, do the first creases miss the corners 
only by a little bit? Why does a group of creases emanate from 
a spot in the interior of the paper? If you are a beginning  
designer, you should realize that no design is sacred. To learn 
to design, you must disregard reverence for another’s model, 
and be willing to pull it apart, fold it differently, change it and 
see the effects of your changes.

Small ideas lead to big ideas; the concepts of design build 
upon one another. So do the chapters of this book. In each 
chapter, I introduce a few design principles and their associ-
ated terms. Subsequent chapters build on the ideas of earlier 
chapters. Along the way you will see some of my own designs, 
each chosen to illustrate the principles introduced in the chap-
ter in which it appears.

Chapter 2 introduces the fundamental building blocks of 
origami: the basic folds. If you have folded origami before, you 
may already be familiar with the symbols, terms, and basic 
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7Chapter 1: Introduction

steps, but if not, it is essential that you read through this sec-
tion. Chapter 2 also introduces a key concept: the relationship 
between the crease pattern and the folded form, a relationship 
that we will use and cultivate throughout the book.

Chapter 3 initiates our foray into design by examining a 
few designs. The first stage of origami design is modification of 
an existing design; in this chapter, you will have an opportunity 
to explore this approach by devising simple modifications to a 
few figures.

Chapter 4 introduces the concept of a base, a fundamental 
form from which many different designs may be folded. You will 
learn the traditional bases of origami, a number of variations on 
these bases, and several methods of modifying the traditional 
bases to alter their proportions.

Chapter 5 expands upon the idea of modifying a base by 
focusing upon modifications that turn a single point into two, 
three, or more simply by folding. This technique, called point-
splitting, has obvious tactical value in designing, but it also 
serves as an introduction to the concept of modifying portions 
of a base while leaving others unchanged.

Chapter 6 introduces the concept of grafting: modifying 
a crease pattern as if you had spliced additional paper into it 
for the purpose of adding structural elements to an existing 
form. Grafting is the simplest incarnation of a broader idea, 
that the crease patterns for origami bases are composed of 
separable parts.

Chapter 7 then expands upon the idea of grafting and 
shows how multiple intersecting grafts can be used to create 
patterns and textures within a figure—scales, plates, and other 
textures. This set of techniques stands somewhat indepen-
dently, as almost any figure can be “texturized.”

Chapter 8 generalizes the concept of grafting to a set of 
techniques called tiling: figuratively cutting up and reassem-
bling different pieces of crease patterns to make new bases. 
This chapter defines both tiles and matching rules that apply 
to the edges of tiles to insure that the assemblies of tiles can 
be folded into a flat shape. Chapter 8 also introduces the pow-
erful concept of a uniaxial base—a family of structures that 
encompasses both the traditional origami bases and many of 
the most complex modern bases.

Chapter 9 shows how the tile decorations that enforce 
matching can be expanded into a design technique in their 
own right: the circle/river method, in which the solution of 
an origami base can be derived from packing circles into a 
square box. Circle/river packing is one of the most powerful 
design techniques around, capable of constructing figures with 
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arbitrary configurations of flaps, and yet it can be employed 
using nothing more than a pencil and paper.

Chapter 10 explores more deeply the crease patterns 
within tiles; those that fit within circle/river designs are called 
molecules. The chapter presents the most common molecules, 
which are sufficient to construct full crease patterns for any 
uniaxial origami base.

Chapter 11 presents a different formulation of the circle/
river packing solution for origami design, called tree theory, in 
which the design of the base is related to an underlying stick 
figure, and the packing problem is related to a set of conditions 
applying to paths along the stick figure. Although equivalent to 
circle/river packing, the approach shown here is readily amenable 
to computer solution. It is the most mathematical chapter, but 
is in many ways the culmination of the ideas presented in the 
earlier chapters for designing uniaxial bases.

Chapter 12 then introduces a particular style of origami 
called box pleating, which has been used for some of the most 
complex designs ever constructed. Box pleating in some ways 
goes beyond uniaxial bases; in particular, it can be used to con-
struct fully three-dimensional figures by various combinations 
of box-like forms, pleats, flaps, and more.

Chapter 13 expands upon the flap concept of box pleating to 
introduce a new concept in design, called polygon packing, and 
a particular type of polygon packing, uniaxial box pleating, that 
ties together the concepts of box pleating and tree theory.

Chapter 14 continues the development of polygon packing 
and uniaxial box pleating, introducing the new design technique 
of hex pleating and methods of generalizing polygon packing 
further to arbitrary angles.

Chapter 15 continues to move beyond uniaxial bases, 
introducing the idea of hybrid bases, which combine elements 
from uniaxial bases with other non-uniaxial structures. The 
world of origami designs is enormously larger than the uni-
axial bases that are the focus of this book, but as this chapter 
shows, elements from uniaxial bases can be combined with 
other structures, expanded, and extended, to yield ever-greater 
variety in origami figures.

The References section provides references and commen-
tary organized by chapter with citations for material from both 
the mathematical and origami literature related to the concepts 
in each chapter.

 Each chapter includes step-by-step folding instructions 
for one or more of my origami designs chosen to illustrate the 
design concepts presented in the chapter. I encourage you to 
fold them as you work your way through the book. Most have 
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9Chapter 1: Introduction

not been previously published. I have also, in several chapters, 
presented crease patterns and bases of models whose instruc-
tions have been published elsewhere; for many of them, you will 
find sources for their full folding sequences in the References 
section, though for some, the discovery of how to collapse the 
crease pattern into the base will be left as an exercise for the 
reader.

The concepts presented here are by and large my own 
discoveries, developed over some 40-plus years of folding. They 
were not developed in isolation, however. Throughout the book 
I have pointed out sources of influence and/or ideas I have ad-
opted. In several cases others have come up with similar ideas 
independently (an event not without precedent in both origami 
and the sciences). Where I am aware of independent invention 
by others, I have attempted to identify it as such. However, the 
formal theory of origami design is very much in its infancy. 
Sources of design techniques are often unpublished and/or 
widely scattered in sometimes obscure sources. This work is 
not intended to be a comprehensive survey of origami design, 
and if it seems that I have left out something or someone, no 
slight was intended.

Technical folding, origami sekkei, is an edifice of concepts, 
with foundations, substructure, and structure. Because the 
organization of this book mirrors this structure, I encourage 
you to read the book sequentially. Each chapter provides the 
foundation to build concepts in the next. Let’s start building.

© 2012 by Taylor & Francis Group, LLC





11

2
uch of the charm of origami lies in its simplic-
ity: There is the square, there are the folds. 
There are, it would appear, only two types 
of folds: mountain folds (which form a ridge) 
and valley folds (which form a trough). So, 

square + mountain folds + valley folds is the recipe for nearly 
all of origami. How simple can you get?

But is it true that there are two types of fold? Maybe 
there’s only one; the mountain fold can be turned into a valley 
fold merely by turning the paper over.

Building Blocks

Figure 2.1. 
A mountain fold is the same as 
a valley fold turned over.

On the other hand, perhaps there are three types of fold: 
valley folds, mountain folds, and unfolds. If we fold the paper 
in half and unfold it, we will be left with a line on the paper—
a crease—which is also a type of fold. Creases are sometimes 
merely artifacts, leftover marks from the early stages of  
folding, but they can also be useful tools. Creases can provide 
reference points (“fold this point to that crease”) and in the 
purest style of folding (no measuring devices, such as rulers, 
allowed) creases, folded edges, and their intersections are the 
only things that can serve as reference points. Creases are 
also commonly made in preparation for a complex maneuver. 
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Origami diagrammers attempt to break folding instructions 
into a sequence of simple steps, but some maneuvers are inher-
ently complex and require bringing 5 or 6 (or 10 or 20) folds 
together at once. For such pleasant challenges, it’s a big help 
to have all the creases already in place. Precreasing helps tame 
the dragon.

Valley, mountain, and crease are the three types of folds 
from which all origami springs. But even a valley fold is 
not necessarily the same as another valley fold if the layers  
of paper do not lie flat. When models move into three  
dimensions, both valley and mountain folds can vary in an-
other way: the fold angle, which can take on many values. 
Imagine drawing a straight line across and perpendicular to 
the fold. The fold angle is the angular change in the direction 
of this line from one side of the fold to the other. This angle can 
vary continuously, from 180° (for a valley fold) to 0° (which is  
no fold at all) to –180° (for a mountain fold). By this measure, 
valley, mountain, and crease are all part of a continuum  
of fold angle.

There is yet more variation: A fold can be sharp or soft. 
The mathematical model of a “fold” is an infinitely sharp line, 
but with real paper, the sharpness of the fold is something the 
folding artist can choose. Sharp creases are not always desir-

Figure 2.2. 
Valley folds, creases, and 
mountain folds are all part of a 
continuum.

Valley

>0° to 180°

Crease

Mountain <0° to –180°

0°
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able. In a complex model with many folds, sharp creases can 
weaken the paper to the point that the paper rips. In a model 
of a natural subject, sharp lines can be harsh and unlifelike, 
whereas soft, rounded folds can convey an organic quality, a 
sense of life. On the other hand, when precision is called for, 
sharp folding may be required to avoid a crumpled mess down 
the road. Consequently, most models call for a mix of sharp 
and soft folding, and while the distinction can sometimes be 
given in the folding diagrams, in most cases, the artist must 
simply develop through experience a feel for how sharp a 
given crease must be.

2.1. Symbols and Terms
Origami instruction is conveyed through diagrams—a  
system of lines, arrows, and terms that become the lingua 
franca (or perhaps lingua japonica) of the worldwide arena. 
The modern system of origami diagrams was first devised by 
the great Japanese master Akira Yoshizawa in his books of 
the 1940s and 1950s, and was subsequently adopted (with 
minor variations) by the two early Western origami authors 
Samuel L. Randlett (United States) and Robert Harbin (U. K.). 
Despite occasional attempts by others at establishing a rival 
notation (e.g., Isao Honda, who used dashed lines everywhere, 
but distinguished mountain folds by a “P” next to the line), the 
Yoshizawa/Randlett/Harbin system caught on and has become 
the sole international system in the origami world.

No system is perfect, and over the years, various diagram-
mers have made their own additions to the system. Some, like 
open and closed arrows (to denote open and closed sink folds), 
died a quiet death; others, like Montroll’s “unfold” arrow, 
have become firmly established in the origami diagrammatic 
lexicon (symbolicon?). Every author has his or her particular 
quirks of diagramming, but the core symbols and terms are 
nearly universal.

Odds are that you already have some familiarity with 
origami and have encountered the Yoshizawa diagramming 
system. It will, however, serve us to run through the basic 
symbols and terms, both to establish a fixed starting point 
and to start the wheels turning for origami design, which  
is as much a way of looking at origami as it is a set of codified 
tools.

The first thing to run through are origami terms, which 
include names, directions, and positions. Origami diagrams are 
ideally drawn so that the diagrams themselves are sufficient 
to enable the reader to fold the model (which allows people the 
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world over to fold from them; a Japanese or Russian folder can 
fold from English diagrams and vice-versa). Nevertheless, many 
people find folding instructions more readily comprehensible 
with a verbal instruction attached, and so in the instructions in 
this book, you will find both words and pictures.

Origami verbal instructions are given as if the paper were 
flat on the page before you. Thus, words that say “fold the flap 
upward” mean that if you orient the working model the same 
way as the diagram on the page, you will fold the flap toward 
the top of the page. “Up,” “down,” and “to the side” all refer to 
directions with respect to the printed page. While directions 
are always given as if the paper were flat on the page, you may 
find it easier to pick the model up, fold in midair, or even turn 
it over to make the fold (mountain folds are commonly made 
by turning the paper over and forming a valley fold). If you do 
this, be sure that you always return it to the orientation shown 
in the next diagram.

As the folded model begins to accumulate multiple layers 
of paper, it becomes necessary to distinguish among the layers. 
By convention, the term “near” refers to the layers closest to 
you (i.e., those on top) and “far” layers are those on the bottom 
(thus, reserving the words “top” and “bottom” for directions 
with respect to the page).

Origami paper typically has a white side and a colored 
side. The two colors are featured in some models—there are 
origami skunks, pandas, and even zebras and chessboards 
whose coloration derives from skillful usage of the two sides of 
the paper. Even if only one side is visible at the end, it is help-
ful in keeping track of what’s going on to show the two sides as 
distinct colors, and that is what I have done here.

Spine

Open
side

Tip

Top

Bottom

Near
layer

Far
layer

Left Right

Colored side

Folded
edge

White side

Horizontal
crease

Vertical
crease

Raw
edge

Corner

Figure 2.3. 
Verbal terms that apply to origami diagrams.
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Brightly colored origami paper often comes precut to 
squares. One of the small ironies of the art is that when precut 
square origami paper was introduced in Japan near the turn 
of the 20th century, it was made from inexpensive European 
machine-made paper, since handmade Japanese washi was 
far too expensive for most purposes. Thus, the origami paper 
that is considered the most authentically Japanese wasn’t 
even originally from Japan!

For your own folding, there is no special requirement on 
paper other than it hold a crease and not easily rip. Traditional 
origami paper—available from most art and craft stores, via 
the Internet, and at many stores in the Japanese quarter 
of large cities—is relatively inexpensive and conveniently 
precut to squares. (It may not be precisely square, however. 
Like most machine-made papers, prepackaged origami paper 
has a definite grain and will change proportion slightly with 
humidity; a square in Florida will probably be a rectangle in 
Nevada.) Other papers that are useful are thin artist’s foil 
(also available from art stores), foil wrapping papers, and 
various thin art papers you may run across with names like 
unryu, kozo, and lokta.

Origami diagrams are usually line drawings. Even in this 
day of three-dimensional computer rendering, line drawings 
convey the information of folding as well as anything. There 
are five types of lines that are used for different features of 
the folded shape. Paper edges, either raw (an original edge 
of the paper) or folded, are indicated by a solid line. Creases 
are indicated by a thinner line, and will often stop before they 
reach the edge of the paper. Valley folds are indicated by a 
dashed line; mountain folds by a chain (dot-dot-dash) line. The 
“X-ray line,” a dotted line, is used to indicate anything hidden 
behind other layers, and could be used to represent a hidden 
edge (most often), fold, or arrow. It will usually be clear from 
context what the X-ray line is meant to represent.

Figure 2.4. 
The five types of lines used in 
sequential origami diagrams.

Mountain fold =
fold the paper
away from you

Valley fold =
fold the paper

toward you
Crease =
location of an
earlier fold,
since unfoldedX-ray line =

hidden edge or
crease

Raw edge Folded edge

© 2012 by Taylor & Francis Group, LLC



16 Origami Design Secrets, Second Edition

If the model is to be rotated in the plane of the page, that 
is indicated by a fraction enclosed in two arrows showing the 
direction of rotation. The number inside the arrows is the frac-
tion of a circle through which the rotation takes place. “1/2” 
is a half turn, i.e., the top becomes the bottom and vice-versa;  
“1/4” indicates a quarter-turn. Sometimes the amount of rota-
tion is not a simple fraction; rather than putting something 
unwieldy like “21/34” in the arrows, I’ll usually round it to the 
nearest quarter-turn and you can use the subsequent diagram 
to pin down the orientation precisely.

Most origami is folded flat at every step. When a model 
becomes three-dimensional, however, either because the final 
model is 3-D or one or more intermediate steps are 3-D, it 

Rotate the paper 1/41/4

Turn the paper over
from side to side

Turn the paper over
from top to bottom

Push here

Actions are indicated by arrows that show the motion of 
the paper as a fold is made and sometimes show manipulations 
of the entire model. An open hollow arrow is used to show the 
application of pressure (usually in connection with a reverse or 
sink fold). See Figures 2.21–2.23 and 2.40–2.47 for examples.

Figure 2.5. 
A hollow arrow indicates to 
“push here.”

Figure 2.6. 
A looped arrow indicates to 
turn the paper over.

Figure 2.7. 
A fraction inside a circle 
formed from two arrows 
indicates to rotate the paper.

An arrow that incorporates a loop indicates to turn the  
paper over—either from side to side (like turning the pages of a 
book) or from top to bottom (like flipping forward or backward 
on a wall calendar), with the direction specified by the orienta-
tion of the arrow.

Push here.

Turn the paper over from 
side to side.

Turn the paper over from 
top to bottom.

Rotate the paper.
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Right angle

23–24Repeat a range of steps

View from this vantage point

frequently becomes necessary to show multiple views of the 
model to fully convey what is going on. In such cases, a small 
stylized eye indicates the vantage point from which a subse-
quent view is taken.

Figure 2.8. 
An eye with a dotted line 
indicates the sightline used to 
specify a new point of view.

Figure 2.9. 
A range of steps to be repeated 
is indicated by a boxed sequence 
of the numbered steps to be 
repeated.

Figure 2.10. 
A right angle is indicated by 
the geometer’s symbol of a 
right angle located next to the 
relevant corner.

The next symbol indicates one of the most dreaded 
instructions in all of origami: repetition. You have worked 
through a long, tortuous sequence of folds, you think you’re 
coming to the end, and there it is: “repeat steps 120–846 on 
the other 7 flaps.” The bad news is usually conveyed in words, 
but for those who fold from the diagrams alone, repetition 
is conveyed by a symbol as well. Harbin, the great Western 
popularizer of origami, devised an arrow with hash marks to 
indicate repetition; however, this symbol is unnecessarily am-
biguous, and I have preferred to use a boxed leader enclosing 
the range of steps to be repeated, as shown in Figure 2.9.

Lastly, it frequently arises that a fold is to be made at 
90° to another fold or to a folded edge. When this takes place 
and it is not obvious that the fold is at 90°, I will indicate it 
by a small right-angle symbol next to (and aligned with) the 
relevant intersection.

2.2. Basic Folding Steps
Now we turn to the basic folds of origami—single folds, or 
combinations of a few folds that occur over and over in ori-
gami figures. Most of these combinations date back hundreds 
of years in Spain and Japan as concepts, if not as recognized 
steps. These are, however, the building blocks from which 
nearly all origami models arise. The names are of much 
more recent vintage and vary from country to country, but in  
English-speaking countries, the names given here are widely 
accepted.

View from this vantage point.

Repeat a range of steps.

Right angle
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The first basic fold is the generic valley fold—a fold made 
with a single straight line, with the fold made concave toward 
the folder. The fold itself is indicated by a dashed line, which 
divides the paper into two parts, one stationary (usually), one 
moving. A symmetric double-headed arrow is used to indicate 
which part moves and the direction of motion. The moving part 
almost always must rotate up and out of the plane of the page; 
this motion is conveyed by curving the arrow.

Figure 2.11. 
A valley fold, as diagrammed, 
and the result.

The opposite of a valley fold is a mountain fold, which is 
called for when a portion of the paper is to be folded behind. 
The mountain fold is indicated by a chain line (dot-dot-dash), 
and the motion of the paper is indicated by a hollow single-
sided arrowhead.

Figure 2.12. 
A mountain fold, as dia-
grammed, and the result.

Quite often, a mountain fold is shown as a bit of  
shorthand for “turn the paper over, make a valley fold, 
and then turn it back to the original orientation,” as in the  
example in Figure 2.12. However, mountain folds are  
frequently used to tuck paper into a pocket or between  
layers, situations where turning the paper over will not  
necessarily make a valley fold possible.

Figure 2.13. 
A mountain fold is not always 
amenable to “turn the paper 
over and make a valley fold.”
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When a mountain fold (or, less often, a valley fold) is 
used to tuck one layer between two others, the layers will 
be separated as in Figure 2.13, and the arrow will be drawn 
between the two layers. If, when folding, you find that a flap 
can be folded into more than one location, examine the draw-
ing closely, as the arrow will likely show where the layer 
should go.

Quite often, both a mountain fold and a valley fold will be 
called for on parallel layers, a maneuver that is commonly used 
for thinning legs and other appendages. This step is shown 
with two arrows and, if possible, both the mountain and valley 
fold. You may perform both a mountain and a valley fold if you 
wish, but many folders actually form both folds as mountain 
folds, making one from each side of the paper.

Figure 2.14. 
Mountain and valley folds used 
to thin a flap.

Figure 2.14 illustrates several common subtleties of ori-
gami diagrams. The valley fold on the far layer is made clear 
by extending the fold line (the dashed line) beyond the edge 
of the paper. The valley fold is understood to run completely 
along the far layer of paper, even though it is not shown. (I 
could use an X-ray line to indicate the extension of the val-
ley fold, but I don’t in this figure because it would get mixed 
up with the overlaid mountain fold line). Both the mountain 
and valley fold layers get tucked into the middle of the model, 
which you can tell by observing that both arrowheads travel 
between the two layers. The resultant figure—the drawing to 
the right—shows the disposition of the layers along its edge, 
which makes this example unambiguous. It is often not pos-
sible to show such layers, however; you must rely upon the 
arrows between the layers, as in the figure on the left.

Folds, once made, do not always persist to the end of the 
model. It is a fairly frequent occurrence that folds are made 
to establish reference points or lines for future folds, or that a 
model is unfolded at some point to perform some manipulation 
upon hidden or interior lines. In either case, folds get unfolded. 
Unfolding is indicated by a symmetric hollow-headed arrow, 
as shown in Figure 2.15.

The same symbol is used to indicate when paper is to be 
pulled out from an interior pocket, as shown in Figure 2.16.
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Particularly in the early stages of folding a model, one 
will make a fold and then immediately unfold it, for the pur-
pose of establishing a crease that will be used in some future 
(usually more complicated) step. To keep the diagrams fairly 
compact, the fold-and-unfold action is commonly expressed 
in a single figure, and is indicated by a single double-headed  
arrow that combines the fold arrow (valley fold) and unfold 
arrow in a single arrow.

Figure 2.15. 
The unfold arrow.

Figure 2.16. 
The unfold arrow used to show 
pulling paper out from inside 
the model.

Figure 2.17. 
Fold-and-unfold is indicated 
by a double-headed arrow that 
combines the “valley fold” and 
“unfold” arrowheads.

Most of the time, the fold in a fold-and-unfold step will be 
a valley fold, but on occasion, the desired crease is a mountain 
fold. Rather than diagramming this in three steps (turn the 
paper over, valley-fold-and-unfold, turn the paper back over), I 
will use the mountain fold arrow in combination with the unfold 
arrow, as shown in Figure 2.18. It should be understood that 
what is intended is to fold the moving flap behind, make the 
crease, and then unfold.

In the study of origami design, the crease pattern of the 
finished figure or a subset of same provides a great deal of 
information about the structure of the model—often more in-
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formation than the sequence of folding instructions, because it 
shows the entire model (or folded form) at once. The simplest 
form of the crease pattern simply shows all creases as crease 
lines, as in Figure 2.19, which shows the crease pattern for 
the traditional Japanese flapping bird.

Figure 2.18. 
Mountain-fold and unfold is 
indicated by a double-headed 
arrow that combines the 
“mountain fold” and “unfold” 
arrowheads.

Knowing just the location of the creases, however, is not as 
useful as it could be; it is far more useful to know the directions 
of the creases, i.e., whether they are valley or mountain folds.

(“More useful” is a bit of an understatement. In 1996, 
Marshall Bern and Barry Hayes proved that figuring out 
crease directions from a generic crease pattern is computation-
ally part of a class of problems known as “np-complete.” As 
such problems grow in size, they quickly outstrip the abilities 
of any computer to solve.)

Thus, it is more helpful to give the direction—or crease 
assignment—of the creases: mountain, valley, or crease (that 

Figure 2.19. 
Crease pattern, base, and folded model of the traditional Japanese 
flapping bird.
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is, not folded at all). The traditional mountain and valley lines—
chain and dashed—tend to lose their distinction in large crease 
patterns, dissolving into a morass of confusing clutter. Thus, 
in crease patterns, I will adopt a different convention that 
provides greater contrast. Creases that are valley fold lines 
will be indicated by dashed colored lines, while mountain folds 
will be solid black lines. Creases that lie flat will be indicated 
by thin gray lines. Flat creases that don’t play an important 
role are not shown at all, but it is sometimes helpful to show 
creases that were important to the construction of the base. To 
see the difference between the two line styles, compare the two 
examples in Figure 2.20.

The use of dashed lines for valley folds and chain lines 
for mountain folds has been firmly established as a worldwide 
standard in origami for decades. The precise line styles used 
for crease patterns are less standardized. In general, because 
mountain folds are more visible in the unfolded paper, I choose 
solid, darker lines for them; valley folds are less visible, so 
they get lighter colors and their traditional dashing pattern, 
but a somewhat finer dashing so that the dashes themselves 
do not distract from the large-scale patterns of mountain and 
valley lines.

A crease pattern that has its mountain and valley folds 
distinctly labeled is said to be assigned, or crease-assigned. If 
we draw all of the fold lines with no distinction, then it is said 

Figure 2.20.
Left: a crease pattern using the traditional patterned lines to 
indicate mountain and valley folds. 
Right: the same crease pattern using contrasting lines specialized 
for crease patterns.
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In the inside reverse fold, the tip of the flap ends up 
pointing away from the spine; in Figure 2.21, the spine is 
the right side of the flap, so the tip must point to the left. If 
you wanted it to point to the right, then you would use the 
other type of reverse fold, the outside reverse fold, which is 
illustrated in Figure 2.22. Again, there is a mountain fold 
and a valley fold, but in the outside reverse fold, the valley 
fold occurs on the near layers and the mountain fold on the 

to be unassigned. Not surprisingly, it can be far harder to fold 
an origami figure from an unassigned crease pattern than 
from an assigned one. The process of assigning creases can 
be thought of as labeling each of the fold lines with further 
information: namely, its fold direction. That’s the first step in 
a much richer potential for labeling, and as we will eventu-
ally see, we can label creases with far more information, and 
far more significant information, than their mere mountain/
valley status.

While all origami models are created entirely from moun-
tain and valley folds, they often occur in distinct combinations, 
combinations that occur often enough that they have been 
given names of their own.

The first and simplest combination fold is the inside 
reverse fold, which is a fold used to change the direction of a 
flap. While either a mountain or valley fold could usually be 
used in the same place, a reverse fold combines both mountain 
and valley and is usually more permanent, since the tension 
of the paper tends to keep the reverse fold together. A reverse 
fold always takes place on a flap consisting of at least two lay-
ers of paper. In an inside reverse fold, the mountain fold line 
occurs on the near layer, a valley fold occurs on the far layer, 
and the “spine” above the fold lines is turned inside-out. It is 
indicated by a push arrow, since to form the reverse fold, the 
spine must be pushed and turned inside-out. If the far edges 
are visible, then the valley fold may be shown extending from 
the visible edge, as in Figure 2.21.

Figure 2.21. 
The inside reverse fold.
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far layers, opposite from what happens in the inside reverse 
fold. The outside reverse fold is also indicated by a push arrow, 
because it is typically made by pushing at the spine with one’s 
thumb while wrapping the edges of the paper around to the 
right. Like the inside reverse fold, it is much more permanent 
than a simple mountain or valley fold would be.

Figure 2.23. 
The five possible ways to turn the tip of a three-layer flap.

Inside reverse fold

Outside reverse fold

Hybrid reverse fold

Mountain fold

Valley fold

Figure 2.22. 
The outside reverse fold.
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Figure 2.24. 
The rabbit-ear fold.

In the verbal instructions, the term “reverse fold” (with-
out an “inside” or “outside” qualifier) will generally mean 
“inside reverse fold.”

A simple flap with two layers has only two possible types 
of reverse fold: inside or outside. More complicated flaps 
with multiple layers can have multiple possibilities or even 
combinations of the two; for example, the triangular shape 
shown in Figure 2.23 (made by folding a square in thirds at 
one corner) can be either inside- or outside-reverse-folded 
to either the left or right; in addition, it is possible to make 
a sort of hybrid reverse fold that combines aspects of both. 
The silhouettes of all three shapes (and for that matter, the 
mountain- or valley-folded equivalents) are the same; they 
differ only in their crease patterns. In diagrams throughout 
the book, they will be distinguished by the presence or absence 
of push arrows (distinguishing reverse folds from mountain 
or valley folds) and/or the configuration of edges shown in 
subsequent diagrams.

Another combination fold that occurs with some regular-
ity is the rabbit-ear fold (which acquired its name from some 
rabbit design long since lost in the mists of antiquity). The 
rabbit-ear fold is almost always performed on a triangular 
flap, and is characterized by three valley folds along the angle 
bisectors of the triangle, with a fourth fold, a mountain fold, 
extending from the point of intersection perpendicularly to 
one side.

When a rabbit-ear fold is formed, all of the edges lie on a 
common line. Remarkably, this procedure works for a triangle 
of any shape—or perhaps it is not so remarkable, since the 
rabbit ear is merely a demonstration of Euclid’s theorem that 
the angle bisectors of any triangle meet at a common point.

Rabbit-ear folds occur not only on isolated flaps. Bring-
ing all the edges to lie on a common line is a special property; 
the rabbit ear is the simplest example of a molecule, which is 
the name for any crease pattern with this property. We will  
encounter rabbit-ear crease patterns and molecules in much 

© 2012 by Taylor & Francis Group, LLC



26 Origami Design Secrets, Second Edition

Figure 2.26. 
A variation of a rabbit ear.

detail and many guises as we delve more deeply into system-
atic design.

In addition to the simple, straightforward rabbit ear, 
there are two variations that are regularly encountered.  
Figure 2.26 shows a variation in which the edges do not lie on 
a common line.

Figure 2.27 shows a combination of two rabbit ears made 
from the near and far layers of a two-layered flap. Known, 
appropriately, as a double rabbit ear, it is typically formed by 
pinching the near and far layers of the flap into rabbit ears and 
then swinging the tip over to the side.

Just as the reverse fold is a combination of a valley fold 
with its mirror image on another layer of a flap, the double rab-

Figure 2.25. 
The rabbit ear can be folded 
from any triangle. 
Top: equilateral. 
Middle: isosceles. 
Bottom: scalene.
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bit ear is a combination of a rabbit ear with its mirror image 
also on another layer.

The next combination fold commonly encountered is the 
squash fold. In a squash fold, the layers of a flap are spread 
to the sides and the folded edge flattened.

Figure 2.27. 
A double rabbit ear.

Figure 2.28. 
The squash fold.

Figure 2.29. 
Another version of a squash 
fold.

The squash fold is quite easy to perform (and sometimes 
very satisfying). It is nearly always formed symmetrically, 
that is, making equal angles on both the left and right. In the 
symmetric form, the crease that used to be the folded edge 
will be lined up with one or more raw edges underneath, as 
in Figure 2.28. It is also possible to squash-fold a point, as 
shown in Figure 2.29. Squash-folded points are harder to keep 
symmetric, because the point covers up the layers underneath, 
but you can make them symmetric by turning the paper over 
and checking the alignment on the other side before you make 
the creases sharp.

There are four creases involved in a squash fold: two val-
leys on each side of two mountains (usually, only one of each 
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We have seen that mountain, valley, and rabbit-ear folds 
have doubled forms where they are combined with their mirror 
images. Are there similarly doubled squash or swivel folds? The 
answer, surprisingly, is yes, and the combination is as difficult 
as the squash fold is easy. The combination of two swivel folds 
is called a petal fold (it is commonly used in origami flowers). 
However, instead of being formed on near and far layers (as in 
the reverse folds and double rabbit-ear fold), the two mirror-
image swivel or squash folds are formed side by side. The petal 
fold is a very famous fold; it is the key step in the traditional 
Japanese flapping bird. It is diagrammed as two side-by-side 
squash folds that share a common valley fold.

On the scale of origami difficulty (which runs simple, in-
termediate, complex, and now, super complex!), the petal fold 
is only considered an intermediate maneuver, but it is usually 

is visible on the near side of the flap). All four creases come 
together at a point. Most of the time, the two valley folds are 
side-by-side and the squash fold is symmetric about the valley 
fold. However, a squash fold can be made asymmetrically and 
it sometimes happens that the two valley folds are not side-by-
side. When that happens, a portion of the visible flap can be 
seen to rotate (about the intersection of all the creases). This 
asymmetric version of a squash fold occurs often enough that 
it is given its own name: a swivel fold.

Figure 2.31. 
The petal fold.

Figure 2.30. 
A swivel fold.

© 2012 by Taylor & Francis Group, LLC



29Chapter 2: Building Blocks 

quite challenging for an origami novice to perform, and so is 
commonly broken down into several steps with some precreas-
ing, as shown in Figure 2.32.

When you are a beginning folder, it is helpful to make 
the precreases as in steps 2 and 3 in Figure 2.32. However, 
as you become comfortable with folding, it’s better to not pre-
crease the sides as in step 2, because it is difficult to make 
the creases through both layers run precisely through the 
corners. It is neater to simply form the bisectors in each layer 
individually.

Petal-folding is usually performed on a flap to make it 
simultaneously narrow and longer. It is also possible to petal-
fold an edge, creating a flap where there was none before, as 
shown in Figure 2.33.

4. Unfold all three flaps.3. Fold the top point down
over the other two flaps.

2. Fold the sides in so that
the raw edges lie along the
center line.

1. The most common petal
fold starts with this shape,
called the Preliminary Fold.

8. Finished petal fold.5. To make the petal fold, lift
up the first layer of the bottom
corner while holding down the
top of the model just above the
horizontal crease. Allow the
sides to swing in.

6. Continue lifting up the
point; reverse the direction of
the two creases running to its
tip, changing valley folds to
mountain folds.

7. Continue lifting the
point all the way; then
flatten.

Figure 2.32. 
The sequence to make a petal fold.

© 2012 by Taylor & Francis Group, LLC



30 Origami Design Secrets, Second Edition

And if you were to cut apart the finished petal fold 
along the center line (cutting both slightly left and right of 
the center line to be sure to sever all layers that touch the  
center line), the petal-folded flap would turn out to be two rab-
bit ears!

Thus, the various combination folds are not distinct  
entities so much as convenient ways of getting two or four 
creases to come together at once. What is important in origami 
design is the underlying structure, not the specific sequence of 
steps one takes to get to the finished model (although it must 
be acknowledged that once the design is fixed, a sequence com-
posed of simple combinations that flows from one to the next is 
far more aesthetically pleasing than a few precreases followed 
by, “Make these 150 creases come together at once”).

Petal folds, squash folds, reverse folds, and rabbit ears are 
all closely related to each other. It is often possible to reach 
the same end by more than one means. For example, the petal 
fold shown in Figure 2.33 can also be realized by making two 
reverse folds and a valley fold.

Figure 2.34. 
An alternative way to make a 
petal fold using reverse folds.

1. Fold the sides in to lie
along the center line and
unfold.

2. Reverse-fold the edges
inside using the creases
you just made.

3. Lift up the frontmost flap. 4. Finished petal fold.

Figure 2.33. 
Petal-folding an edge.
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Figure 2.35. 
A bisected petal fold reveals 
that it is composed of two 
rabbit-ear folds.

Figure 2.36.
Left: a pleat diagram. 
Right: the finished pleat.

Figure 2.37. 
Left: a crimp diagram. 
Right: the finished crimp.

Reverse folds are commonly used to change the direction 
of a flap, for example, to do the final shaping. Another com-
bination fold that is used to shape flaps is the pleat, which 
consists of side-by-side mountain and valley folds.

A pleat formed through a single layer of paper is unam-
biguous. However, when there are multiple layers present, 
there is a closely related fold, illustrated in Figure 2.37, which 
is called a crimp.

The crimp is a combination of a pleat with its mirror im-
age on the far layer of paper. Thus, a crimp bears the same 
relationship to a pleat that an inside reverse fold bears to a 
mountain fold (or an outside reverse fold to a valley fold). Just 
as reverse folds do not come undone as easily as mountain or 
valley folds, crimps are more permanent than pleats. Both 
crimps and pleats are diagrammed by showing the fold lines 
on the near layers of paper; they can be distinguished by ex-
amining the edges of the flap. Sometimes it is not practical 
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to show the edges, so a small set of zigzag lines is drawn next 
to the edge (as in Figures 2.36 and 2.37), which represents an 
edge-on view of the finished crimp or pleat.

The two folds of a pleat or crimp are often parallel, but they 
need not be. If they are not parallel, then the flap will change 
direction, with the net change of direction equal to twice the 
difference between the angles of the two creases.

The valley and mountain folds that make up a pleat or 
crimp can meet each other at one edge of the flap or the other, 
but cannot meet in the interior of the paper without adding ad-
ditional creases. If you try to make them meet in the interior, 
which you can do by stretching the ends of an angled pleat or 
crimp away from each other, you will find that a small gus-
set must form that extends from the intersection point to the 
adjacent edges.

Stretching a pleat (or more commonly, a crimp) until it 
forms a gusset is a fairly common maneuver that is used to 
soften the change of angle to realize a more natural, rounded 
form. Stretching gussets is also the basis of some of the most 
powerful design techniques that we will see.

All of the combination folds we have encountered so far 
have involved edges, either the raw edge of the paper or folded 
edges on which the creases terminate. Their formation is some-
what eased by the ability to reach around behind each layer of 

Figure 2.38. 
Examples of angled pleats (top) 
and crimps (center, bottom).
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Figure 2.40. 
Stretching an angled crimp forms a gusset between the layers of 
paper.

1. Example of a stretched pleat.
Pull the two sides apart, keeping
the angle fixed.

2. The top will form a little hood
on either the front or back side.

3. Finished stretched pleat with
gusset.

1. Example of a stretched crimp.
Pull the two sides apart, keeping
the angle fixed.

2. The top forms a narrow
diamond; dent the middle down
between the layers.

3. Finished stretched crimp with
gusset.

Figure 2.39. 
Stretching an angled pleat forms a gusset on either the near or 
far layers.

paper and work on the fold from either side. The next group 
of combination folds does not have this property—they are 
the family of sink folds. The inability to reach both sides of 
the paper makes them considerably harder to perform, since 
(usually) only one side of the paper is accessible, and usually 
puts any model including them well into the complex rating of  
difficulty. However, sink folds arise quite naturally from  
systematic methods of origami design, and so it is essential 
that they be learned and practiced.

The simplest of the various sink folds is the spread sink, 
which is only marginally more difficult than a squash fold. It 
works the same way; a flap is lifted up, its edges are spread 
symmetrically, and the result is flattened. What distinguishes 
a spread sink from a squash fold is that in the spread sink, at 
least two layers—an outer one and an inner one—are simul-
taneously squashed while remaining joined. Spread sinks are 
very satisfying to make; you start by flattening the very tip 
of the flap, then as the edges are stretched to the sides, the 
flattened region grows and reaches its maximum size when 
the paper is completely flat.

Spread sinks are most often formed from triangular 
corners, but there are analogous structures that form convex 
polygons of any size and shape.
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The next member of the sink family is the conventional, 
or open, sink. The open sink is a simple inversion of a corner 
formed from a region in the interior of the paper. Conceptu-
ally, it is quite simple: The line of the sink is a mountain fold, 
which runs all the way around the point being sunk like a road 
girdling a mountain peak. All of the creases above the sink line 
get converted to the opposite parity, mountain to valley, valley 
to mountain.

What makes an open sink “open” is that the part of the pa-
per being sunk can (usually) be opened out entirely flat, which 
allows a relatively straightforward strategy for its formation: 
stretch the edges apart so that the tip of the point to be sunk 
flattens out, pinch a mountain fold all the way around, then 
push the middle down into the model and flatten the model. 
The creases in the sunk region will (again, usually) fall into 
the right place.

Figure 2.42 shows this process, including the intermediate 
stage, and the crease pattern of the result.

It is sometimes possible to make an open sink by perform-
ing a spread sink first, as Figure 2.43 shows.

Figure 2.42. 
The open sink, formation and crease pattern.

Figure 2.41. 
A spread sink.
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5. Grasp the sides and fold
them down while simul-
taneously stretching and
pushing down on the top
flap.

6. Bring the middle of
the sides of the square
region together at the
top.

7. Completed sink fold.

1. A sink fold can
sometimes easily be
made as a spread-sink,
as this sequence shows.

2. Fold the point down
along the sink line.

3. Fold and unfold
along a crease that just
touches the tip of the
point.

4. Unfold the point.

Figure 2.43. 
Folding sequence for making a sink folding using a spread sink.

The example in Figure 2.43 is for a four-sided sink—one 
in which the point has four ridges coming down from it (and 
the polygon outlined by the mountain folds “going around the 
mountain” is a quadrilateral), but you can form three-, five-, 
and higher-sided sinks in a similar way.

As we have seen, a valley fold can combine with its mir-
ror image to make a reverse fold, a squash fold can combine 
with its mirror image to make a petal fold, and a rabbit ear 
can combine with its mirror image to make a double rabbit 
ear. Can a sink fold be combined with its mirror image? Yes, 
in multiple ways, but the most common way happens when a 
point is sequentially sunk down and back up. The maneuver 
is called a double sink (or triple or quadruple sink, for more 
complicated generalizations).

Although a multiple sink can be made sequentially—make 
the lowest sink, then reach inside and sink the point back 
upward—it’s usually easier to make them all together, first 
pinching the mountain folds around the point, then pinching the 
valley folds around before attempting to close up the model.
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Sinks were recognized as distinct origami steps in the 
late 1950s and early 1960s. However, it took until the 1980s 
for a new variant to become common, the closed sink (whose 
recognition forced the division of sinks into “open” and “closed” 
varieties). A closed sink is also an inversion of a point, but in 
such a way that it is not possible to open the point flat while 
performing the maneuver. This makes closed sinks extremely 
hard to perform. In fact, from a strictly mathematical viewpoint, 
it is impossible to perform a closed sink using a finite number 
of folds (and what is impossible in mathematics is usually 
pretty hard in reality). That we can make closed sinks at all is 
due to the ability to “roll” a crease through one or more folded 
layers of paper.

Superficially, a closed sink is diagrammed the same way 
as an open sink: a push arrow and a mountain fold. However, 
in the closed sink, instead of forming the mountain fold all the 
way around every layer, some of the layers are held together, 
forming a cone, and the point is inverted through the cone 

4. Finished double sink.

3. Form both the mountain
and valley folds running all
the way around the flattened
polygon.

2. Always pre-crease
all lines of a multiple
sink before opening.

1. A double sink is
indicated by parallel
mountain and valley
creases with a push
arrow.

Figure 2.44. 
A double sink, how to make it, and its crease pattern.
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4. Finished closed sink.3. Push down inside the
pocket, opening the point
back up.

2. Bring two layers of
paper in front of the
rabbit ear.

1. Another way to make
a closed sink is to fold
down the point and fold
a rabbit ear from it.

Figure 2.45. 
Formation of a closed sink. Right: the edges of an open sink for 
comparison.

Figure 2.46. 
How to make a closed sink from a sharp point.

Closed sink Open sink

4. In an open sink, all
edges are visible at the
top of the sink.

3. Flatten when fully
inverted. In a closed sink,
some edges are trapped at
the top of the sink.

2. Open the point into
a cone; starting at one
side, start inverting
the cone.

1. A closed sink is also
indicated by a push
arrow, but is formed
differently.

without opening it out. Closed sinks are useful for locking 
layers together, as the edges of the pocket formed by a closed 
sink, unlike those of an open sink, cannot usually be opened 
up. The finished result can be distinguished by the presence 
of pleated layers inside the pocket of an open sink versus few 
or none in a closed sink.

In general, the more acute the point of a closed sink, 
the harder it is to carry out; anything narrower than a right 
angle is usually so difficult that it’s more efficient to do it in 
two steps, as shown in Figure 2.46. First, fold the point into 
a rabbit ear, closed-sink the top of the rabbit ear, then once 
the sink is started, fully invert the rabbit ear back into the 
shape of the original point.
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Closed sink

Open sink

Mixed sink

Mixed sink

Figure 2.47. 
The nine distinct types of sink for a four-ridged point.

For any given corner, there is only one way of making an 
open sink, but there are multiple ways of forming closed sinks; 
in fact, a sink can be open at one end and closed at the other, 
an arrangement called a mixed sink. The different varieties 
are not always distinguishable from the outside, as different 
arrangements of interior (hidden) layers can have the same 
outward appearance. For a quadrilateral sink—one with four 
ridges running down from the top point—there are nine distinct 
configurations. They and their crease patterns are shown in 
Figure 2.47.

© 2012 by Taylor & Francis Group, LLC



39Chapter 2: Building Blocks 

Figure 2.48. 
An unsink fold.

In diagrams, which version of sink is desired is usually 
conveyed by the arrangement of edges in the subsequent views 
and/or by cut-away views of the interior layers.

The last—and by many accounts, the most challenging—
of the sink folds goes by the name of unsink. As the name sug-
gests, it is a reversal of a sink fold. That is, you are presented 
with an apparently sunken point and the object is to invert the 
point upward. The challenge here is that while you can always 
push a point downward to sink it, pulling a layer upward is 
problematic when there is nothing to grab onto.

Unsink folds come in open and closed varieties that are 
analogous to their similarly named sink brethren. The unsink 
is the youngest of the sink combination folds: It only began to 
be used in the late 1980s, and since then, only sporadically. 
It is not hard to imagine why. Most of the other combination 
folds arise naturally from the process of “playing with” the 
paper. If you want to change the direction of a point, the re-
verse fold naturally follows. Stretch a point to make it longer, 
and you are likely to (re)discover the petal fold. Shorten a 
flap—crimps and pleats fill the bill. And removal or round-
ing of a corner will lead you to reverse folds and sinks, both 
open and closed. But the unsink is something of an anomaly. 
It’s unlikely to arise from simple doodling or shaping. But it 
does arise very directly from systematic origami design. In 
this chapter, we are—fortunately—still far away from being 
forced to learn to unsink, but we now, having enumerated 
the basic folds of origami, are ready to make our first forays 
into origami design.
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3
n the beginning—at least, according to some 
mythologies—there was the Elephant. And so 
it is with the elephant that we begin our foray 
into origami design. The elephant—the subject 
of Georgeot’s exhibition—is one of the most  

common subjects for origami. Presumably, this is because it 
is so readily suggested. Almost any large shape with a trunk 
is recognizable as an elephant. If the shape has four legs and 
large, floppy ears, so much the better. But all these features 
aren’t needed; in fact, it is possible to fold an elephant using a 
single fold, as Figure 3.1 shows (designed by Dave Mitchell).

Elephant Design

Figure 3.1. 
Dave Mitchell’s One-Crease Elephant.

1. Begin with a sheet of writing paper. Fold the
upper right corner down along an edge.

2. Finished One-Crease Elephant.

Do you see it? The elephant is facing to the right.
Yes? Perhaps? This simple model—about as simple as you 

can get—illustrates one of the most important characteristics 
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of origami models: They simplify the subject. Nearly all ori-
gami design is representational, but unlike, say, painting, the 
constraints of folding with no cuts make it nearly impossible 
to produce a truly accurate image of the subject. Origami is, as 
origami artist and architect Peter Engel has noted, an art of 
suggestion. Or put another way, it is an art of abstraction. The 
challenge to the origami designer is to select an abstraction of 
the subject that can be realized in folded paper.

You can also select a subject that lends itself to abstrac-
tion. Elephants are also popular subjects for origami design 
because they offer a range of challenges. What features do you 
include in the design? Is it a spare representation relying on a 
few lines to suggest a form, or is it necessary to capture all of 
the features of the subject? Getting the head and trunk may be 
sufficient for some folders, while others will be satisfied with 
nothing less than tusks, tail, and toenails. A somewhat more 
detailed elephant is shown in Figure 3.2.

Figure 3.2. 
Base crease pattern and finished folded model of my African 
Elephant.

These two designs illustrate the range of origami design: 
Every origami design falls somewhere along a continuum of 
complexity. Arguably, the one-crease elephant is the simplest 
possible origami elephant. But the complex elephant is almost 
assuredly not the most complex elephant possible. Complexity 
in origami is an open-ended scale; the title of “most complex” 
origami design (for any subject) is always transitory.

Furthermore, complexity carries with it a special burden. 
We do not denigrate the one-crease model for its abstraction; 
indeed, its abstract nature is part of its elegance and charm. 
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But a complex model creates a certain level of expectation in 
the viewer: an expectation that the model will convey a richer 
vision. The more folds we have in the model, the more we can 
reasonably expect from it. And thus, we must make every fold 
in the design count for something in the end result if elegance 
is to be attained.

Georgeot’s exhibition consisted of 88 elephants rang-
ing from simple to very complex indeed. But elephants, like  
rabbits, have a way of multiplying. Once he became known as 
“the origami elephant guy,” origami elephants continued to 
come his way. He wrote that he had accumulated 155 different 
designs by the year 2000. Many folders have sent more than 
one, up to eight different designs from a single artist.

If you were to pick any two of Georgeot’s elephants, you 
would find that they differ in many ways: One could be flat, 
the other three-dimensional; one in profile, one in front view. 
They might differ in the orientation of the paper relative to 
the model, in the number of appendages, or in what part of 
the paper those appendages come from. They may differ in 
the level of abstraction versus verisimilitude, in cartoonism 
versus realism, even in the use of curved versus straight 
lines (and which lines are chosen). All of these features are  
decisions that the designer makes along the way, whether 
consciously or unconsciously.

Of all the artistic criteria that may be applied to origami, 
one of the most important, yet elusive, is elegance. Elegance 
as it applies to origami is a concept not easily described. It 
implies a sense of fitness, of economy of effort. In origami, an 
elegant fold is one whose creases seem to go together, in which 
there is no wasted paper, whose lines are visually pleasing. 
Elegance cannot be easily quantified, but there is a property 
closely related to elegance that can: efficiency.

While elegance is a subjective measure of the quality of a 
design, efficiency is an objective measure. An efficient model 
is one in which all of the paper gets used for something; noth-
ing is tucked out of the way. Inefficient models are those with 
unnecessary layers of paper. Such models are thick and bulky, 
often difficult to fold, and usually less aesthetically pleasing 
than a model without unnecessary layers of paper.

The most efficient models are the largest possible for a 
given sheet of paper. If you have folded two figures from ten-
inch squares of paper and one figure is three inches across 
and the other is two inches across, then the smaller figure 
must by necessity have more layers of paper on average in any 
given flap. The smaller model will generally be thicker; it will 
hold together less well; and it will show more edges, which 
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will break up the lines of the model. In short, the less efficient 
a model is, the poorer its visual appeal. Thus, efficiency is an 
aesthetic goal as well as a mathematical goal. For a base with 
a fixed number of flaps, the most efficient base is that base in 
which the flaps are as large as possible.

The tools of origami design cannot (yet) directly address 
elegance, but they can address its close relative, efficiency, 
by quantifying what is possible and impossible and providing  
direction for maximally efficient structures. To wield the tools 
of origami design, one must have some tools to start with. 
The way to build a set of tools is to examine some examples of  
design and deconstruct the model, identifying and isolating 
specific techniques. To get started and to illustrate some basic 
principles of origami design, let’s add three more elephants to 
the roster.

3.1. Elephant Design 1
The first design shown in Figure 3.3 is for an Elephant’s Head. 
It is very simple and takes only five creases.

This is very simple—it’s perhaps one step up from the 
One-Crease Elephant, although, you might note, it took five 
steps. Can you devise an elephant using exactly two creases? 
Exactly three?

3.2. Elephant Design 2
On the scale of origami complexity, both the One-Crease  
Elephant and the Elephant’s Head fall into the “simple” 
category. But as we add more features to a model, it almost 
invariably increases in complexity. As an illustration, let’s take 
the same basic design as the Elephant’s Head and add a pair 
of tusks to it.

The amount of folding increased substantially, just to cre-
ate two tiny points for tusks. But I also added a few steps to give 
definition to the ears (step 9). Why? Why not just leave the face 
a flat surface as we did in the previous model? Two reasons. In 
the first Elephant’s Head, the ears came almost for free—there 
were two flaps (the corners of the square) available to work with. 
But in this design, we needed to create side flaps (in steps 8 
and 9) to define the ears, which required more folding.

There’s a second reason, however, which is a bit more 
subtle. There is an aesthetic balance that needs to be main-
tained across an origami design. The tusks introduce some 
small, fine features into the model. The contrast between 
those fine features and the broad, flat, featureless expanse of 
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1. Begin with the colored side
up. Fold and unfold along the
vertical diagonal. Turn the paper
over.

3. Fold corners A and B down
so that their outer edges are
vertical.

2. Fold edges AC and BC in to
lie along the center line DC.

C

A B

D

C

A B

D

4. Fold down about 1/3 of
point D (the exact amount
isn’t critical) and turn the
model over.

C

A B

D

5. Finished Elephant’s Head.

C

AB

Figure 3.3. 
Folding sequence for an Elephant’s Head.

the face is jarring, so we introduced two folds to break up the 
surface of the face a bit and bring some balance to the lines 
of the model.

3.3. Elephant Design 3
We can take another step up the ladder of complexity. Now 
we’ll make the tusks a bit longer.

These three models depict the same subject, but with 
progressively greater anatomical accuracy (although they 
still leave a lot to be desired—like a body). They are simple, 
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Figure 3.4. 
Folding sequence for the more complex Elephant’s Head.

1. Begin with the colored
side up. Fold and unfold
along both diagonals. Turn
the paper over.

C

A B

D

2. Fold edges AC and BC in
to lie along the center line
DC and unfold. Repeat with
edges AD and BD.

3. Fold rabbit ears
from corners A and B.

C

A B

D

4. Fold corners A and B to
the outside edges.

C

D

A B

5. Fold corner D down so that it
lies on an imaginary line running
between points A and B.

C

D

A B

6. Fold corners A and B in half.
Fold corners E and F down (the
exact amount isn’t critical).

C

A B
D

E F

7. Turn the model
over.

C

A B
D

E F

8. Pleat the front flap upward.
The mountain fold will run
from corner G to corner H.

9. Pleat the sides of the
head to form ears.

C

AB

G H

C

AB

G H

10. Finished Elephant’s Head.
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Figure 3.5. 
Folding sequence for yet another Elephant’s Head.

1. Begin with the
colored side up. Fold
and unfold along the
diagonals. Turn the
paper over.

2. Fold and unfold. 3. Bring the four
corners together at
the bottom to make
a Preliminary Fold.

4. Fold edges AD and
CD in to the center line
and unfold. Then fold
point B down and
unfold.

A

B

C

D

5. Petal-fold front and
back to make a Bird
Base.

A

B

C

D
6. Fold and unfold on
the near flap. Each
crease lies directly
over a folded edge.

B

D

A C

7. Fold corner D down
while pulling points A
and C out to the sides;
flatten.

B

D

A C

8. Turn the paper
over.

B

A C

D

9. Reverse-fold the
two bottom points
out to the sides.

B

AC

D
10. Narrow the two
points with valley folds
in front and behind.

B

AC

D
11. Fold point E down.

B

AC

D

E

12. Fold point B down.

B

AC

D

E

13. Fold the corners
down and turn the
model over.

AC

D

E

14. Curve the tusks.

A C

D
15. Finished
Elephant’s Head.
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but illustrate some basic principles of origami design that are 
worth identifying: 

Generally, the more long points a model has, the 
more complex its folding sequence must be.

Generally, the more long points a model has, the 
smaller the final model will be relative to the size 
of the square.

These principles were widely known in the origami world 
of the 1960s and 1970s, but it was not until the 1980s and 
1990s that they could be quantified. Those two decades saw 
the appearance of a new type of origami, the “technical fold.” 
It is hard to define precisely what constitutes technical fold-
ing; technical folding tends to be fairly complex and detailed, 
encompassing insects, crustaceans, and other point-ridden 
animals. It is often geometric, as in box-pleated models and 
polyhedra. The early practitioners of what we call technical 
folding—Neal Elias, Max Hulme, Kosho Uchiyama, and a 
handful of others—were joined by a host of other folders—
Montroll, Engel, and myself in the U.S., Fujimoto, Maekawa, 
Kawahata, Yoshino, Kamiya, Meguro, and many others in  
Japan—an expansion of the art that continues today. In fact, tech-
nical folding has its own name in Japan: origami sekkei. It is diffi-
cult to pin down a unique characteristic of a model that defines it 
as origami sekkei, but I have a candidate criterion: A fold is a tech-
nical fold when its underlying structure shows clear evidence of  
intentional design.

The first steps of design, however, do not require use of 
any specialized techniques or mathematical theorems. Anyone 
who can fold origami can design origami. In fact, if you folded 
one of the three elephant designs, you were calling upon your 
design skill. A sequence of folding diagrams—no matter how 
detailed—can still only provide a set of samples of what is a 
continuous process. In following a folding sequence, the reader 
must interpolate; he must connect the steps in his mind to form 
a continuous process. Depending on the amount of detail into 
which the steps are broken down, this process can be easy, as 
in Figure 3.6, or it can be difficult, as in Figure 3.7.

A good origami diagrammer, balancing the needs of  
brevity and clarity, strives to match the level of detail to the 
complexity of the fold and to the intended audience. In this 
book, I have aimed for a middle ground, along the lines of  
Figure 3.8.

When you begin following diagrams, you require each 
instruction to be broken down into the smallest possible steps. 
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Figure 3.6. 
Detailed sequence for folding a Bird Base.

1. Begin with the colored side
up. Fold and unfold along the
diagonals. Turn the paper over.

2. Fold and unfold. 3. Bring the four corners
together at the bottom to
make a Preliminary Fold.

4. Fold edges AD and CD in to
the center line and unfold.
Then fold point B down and
unfold.

A

B

C

D
5. Petal-fold front and back to
make a Bird Base.

A

B

C

D
6. The Bird Base.

B

D

A C

As you gain experience in following diagrams, the jumps be-
tween steps become larger. Instead of seeing every individual 
crease, the creases start to come in groups of two or three. As 
we have seen, the most common groups of creases have been 
given names: reverse folds, rabbit-ear folds, petal folds. More 
advanced folds may have groups of 10 or 20 creases that must 
be all brought together at once, or several different folds must 
occur simultaneously, or not all creases may be visible in the 
diagram. Following such a sequence is even more a process 
of design. Following a folding sequence is, in effect, resolving 
a series of small design problems going from one configuration 
of the paper to the next. Designing an entirely new model is 
the same task, merely scaled up.
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Figure 3.7. 
Compact sequence for folding a 
Bird Base.

Figure 3.8. 
Intermediate sequence for folding a Bird Base.

Origami design runs along a continuous scale ranging from 
minor modification of an existing design to the “ground-up” 
creation of an entirely new model. Just as a beginning folder 
should begin to fold simple models from diagrams, the begin-
ning designer should choose simple shapes to design.

2. The Bird Base.

B

D

A C

1. Divide the square in half vertically and
horizontally with creases. Crease all angle
bisectors at the corners, then assemble using the
creases shown.

1. Begin with a square with creased
diagonals. Bring the four corners
together at the bottom and flatten.

2. Petal-fold front and back.

A

B

C

D
3. The Bird Base.

B

D

A C

© 2012 by Taylor & Francis Group, LLC



51Chapter 3: Elephant Design

And now is as good a time as any to start. The elephants 
in Figures 3.4 and 3.5 have colored tusks. Can you find a way 
to alter each model so that the tusks become white as shown 
in Figure 3.9? (Hint: Turn a flap inside-out.)

The first stage of origami design is to modify someone 
else’s work, as you can with the elephants. Origami design is, 
in large part, built on the past. The origami designers of the 
present have created new techniques, but in doing so, they 
used techniques of those anonymous Japanese folders of his-
tory (as well as those of their contemporaries, of course). It 
behooves us to spend some time studying how prior genera-
tions of folders designed their models.

Figure 3.9. 
Two variations on the Elephant’s 
Heads.
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4
he design of an origami model may be broken 
down into two parts, folding the base, and  
folding the details. A base is a regular geomet-
ric shape that has a structure similar to that 
of the subject, although it may appear to bear 

very little resemblance to the subject. The detail folds, on  
the other hand, are those folds that transform the appear-
ance of the base into the final model. The design of a base 
must take into account the entire sheet of paper. All the  
parts of a base are linked together and cannot be altered  
without affecting the rest of the paper. Detail folds, on the other 
hand, usually affect only a small part of the paper. These are the 
folds that turn a flap into a leg, a wing, or a head. Converting a 
base into an animal using detail folds requires tactical thinking. 
Developing the base to begin with requires strategy.

The traditional Japanese designs were, by and large, de-
rived from a small number of bases that could be used to make 
different types of birds, flowers, and various other figures. For 
much of the 20th century, most new origami designs were also 
derived from these same basic shapes.

Bases have been both a blessing and a curse to inventive 
folding: a blessing because the different bases can each serve 
as a ready-made starting point for design, a curse because by 
luring the budding designer onto the safe, well-trodden path 
of using an existing base, he or she starts to feel that there’s 
nothing new to do and never explores the wilds of base-free 
origami design.

We will, by the end of this book, do both. However, we 
will start with the traditional bases—first, to understand 
what our origami designer forebears had to work with, and 
second, because the traditional bases, despite being picked 

Traditional Bases
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over by scores of origami designers for decades, still have 
some surprising life in them. While they may seem like unique 
constructions, the traditional origami bases are actually  
specific embodiments of quite broad and general design  
principles. By thoroughly understanding the traditional bases, 
we are prepared to understand the deeper principles of origami 
design.

4.1. The Classic Bases
So what, exactly, are the standard bases of the origami  
repertoire? Now, it must be admitted that any labeling scheme 
that dubs certain structures “the standard bases” is going to 
be somewhat arbitrary. But there are four shapes known for   
hundreds of years in Japan that are the basis of several tra-
ditional models. These shapes have a particularly elegant 
relationship with one another that takes on a special sig-
nificance in origami design. They are often called the four  
Classic Bases of origami and are named for the most famous 
models that can be folded from them: the Kite, Fish, Bird, 
and Frog Base.

Perhaps not surprisingly, in many cases, more of the 
structure of an origami model is evident in the crease pattern 
than in the folded base. For one thing, in the crease pattern, 
all parts of the paper are visible, while in the folded model 
only the outermost layers are visible—perhaps 90% or more 
of them are hidden. Furthermore, certain structures appear 
over and over in a crease pattern, which you can recognize 
as features of the finished model. (Do a lot of creases come 
together at a single point? That point probably becomes the 
tip of a flap of the model.) With practice, you can learn to read 
the structure of a model in the crease pattern as if it were 
the entire folding sequence. The crease patterns, bases, and 
a representative model from each of the four Classic Bases 
are shown in Figure 4.1.

We have already encountered three of these in the El-
ephant’s Head series—the Kite, Fish, and Bird Bases. (Chal-
lenge: Can you design an elephant that makes full use of the 
flaps of a Frog Base?) There is no precise definition of a base; 
perhaps a good working definition is “a geometric form with 
the same general shape and/or number of flaps as the desired 
subject.”

In origami, a flap is a region of paper that can be manipu-
lated relatively independently of other parts of the model. In 
origami design, bases supply flaps; major flaps on a base then 
get turned into major appendages of a final model. The Kite, 
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Fish, Bird, and Frog Bases have, respectively, one, two, four, 
and five large flaps and one, two, one, and four smaller flaps. 
To fold an animal, you usually need to start with a base that 
has the same number of flaps as the animal has appendages. 
A simple fish has two large flaps (head and tail) and two 
small ones (pectoral fins), which is why the Fish Base is so 
appropriate and so named. The average land-dwelling verte-
brate has five major appendages (four legs and a head), which  
suggests the use of the Frog Base, but only if there is no long 
tail. The Frog Base does have five flaps, but the flap on the 

Figure 4.1. 
Crease pattern, base, and a 
representative model for (top to 
bottom): Kite Base; Fish Base; 
Bird Base; Frog Base.
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Frog Base that is in a position to form a head is thick and dif-
ficult to work with. One of the four flaps of a Bird Base would 
be easier. But to use a Bird Base to fold a four-legged animal, 
you would have to represent two of the legs (usually the rear 
legs) with a single flap. In the 1950s and 1960s, there were a 
lot of three-legged origami animals hobbling around.

4.2. Other Standard Bases
The Classic Bases are not the only bases in regular use. There 
are a few other candidates for standard bases: the so-called 
Preliminary Fold (a precursor to the Bird and Frog Bases), 
the Waterbomb Base (obtainable from the Preliminary Fold 

Figure 4.2. 
Top to bottom: the Cupboard 
Base, Windmill Base, Water-
bomb Base, and Preliminary 
Fold.
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by turning it inside-out), the Cupboard Base (consisting of 
only two folds), and the Windmill Base (also known as the 
Double-Boat Base in Japan).

The Preliminary Fold was named Fold rather than Base 
by Harbin since it was a precursor to other bases, a somewhat 
artificial distinction that has stubbornly persisted in the 
English-speaking origami world.

Up through the 1970s, origami designers combined these 
bases with other procedures, known variously as blintzing, 
stretching, offsetting, and so forth—and we will learn some of 
these as well—resulting in a proliferation of named bases. It 
was not unheard-of to find, for example, a “double stretched 
Bird Base (type II)” as the starting form for a model. (Rhoads’s 
Bat, Secrets of Origami). Of all the possible variants, two are 
sufficiently noteworthy as to deserve attention: the stretched 
Bird Base and the blintzed Bird Base are fairly versatile treat-
ments of the classic Bird Base that have seen heavy use in 
modern times. Both are shown in Figure 4.3.

The stretched Bird Base is derived from the traditional 
Bird Base. It is obtained by pulling two opposite corners of the 
Bird Base as far apart as possible and flattening the result. 
Harbin recognized several variants of the stretched Bird Base, 
but the version shown in Figure 4.3 is the most common.

The blintzed Bird Base is also derived from the tradi-
tional Bird Base. It is obtained by folding the four corners to 
the center of a square, folding a Bird Base from the reduced 
square, and then unwrapping the extra paper to form new 
flaps. There are several ways of unwrapping the corners 

Figure 4.3. 
Top: stretched Bird Base.
Bottom: blintzed Bird Base.
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to make use of the extra flaps. The procedure of folding  
four corners to the center is called blintzing, named after the 
blintz pastry in which the four corners of a square piece of 
dough are folded to the center. For many years blintzing a base 
has been recognized as a straightforward way of increasing the 
number of flaps in a base.

Yet another named base system had been developed  
in Japan by Michio Uchiyama in the 1930s and thereafter. 
His system, carried on by his son Kosho, recognized two broad 
families of bases, one characterized by diagonal or radiat-
ing folds (type A) and the other by predominantly rectilinear  
folds (type B). Figures 4.4 and 4.5 show both families of bases. 
I have labeled them with Uchiyama’s original numbering  
but rearranged them to better illustrate the relationships  
between bases. 

Note that Uchiyama only gives the major creases for 
each base and does not specify the mountain/valley assign-
ment; to make the shape flat, you will have to add additional 
creases on some of the patterns and work out the assignment 
for yourself.

Beginning with the development of subject-specific  
bases in the 1970s (Animal Base, Flying Bird Base,  
Human Figure Base), the variety of bases quickly prolifer-
ated to the point that naming every base began to seem a bit  
silly (the Great Crested Flycatcher Base). The net result  
was that most names were left by the wayside. Different  
authorities recognize different groups of bases as the standard 
set, but the four Classic Bases plus the Preliminary Fold, 
Waterbomb Base, Cupboard Base and Windmill Base are  
common to most.

4.3. Relationships between Bases
The standard bases are not wholly independent; some can be 
derived from others, as was suggested by Uchiyama’s clas-
sification system and is illustrated more explicitly in Figure 
4.6. Arrows indicate derivation. The square can be folded into 
a Cupboard Base, which can be further transformed into a 
Windmill Base. Similarly, the Kite Base is but a way station 
on the path to a Fish Base. The Preliminary Fold and Water-
bomb Base are the same thing—one is just the inverse of the 
other—but while the Preliminary Fold alone can be turned 
directly into a Bird Base, either the Waterbomb Base or the 
Preliminary Fold can be used to make a Frog Base.

But the four Classic Bases—Kite, Fish, Bird, and Frog—
share a deeper similarity that is only evident when one examines 
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A1

A2

A3

A4

A5

A6

A7

A8 A9

A11

A12

A10

A13

A14

A15Figure 4.4. 
The Uchiyama system of A bases, which are based primarily upon 
diagonal and/or radial folds. Note that the Kite Base, Fish Base, 
Bird Base, and Frog Base are among them.
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Figure 4.5. 
Uchiyama’s B bases.

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15
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their crease patterns. In these four bases, the same funda-
mental pattern appears in multiples of two, four, eight, and 
sixteen.

This reappearing shape is an isosceles right triangle 
with two creases in it; Figure 4.7 shows how it appears in 
each base in successively smaller sizes. Although the crease 
directions (mountain versus valley) may vary, the locations 
of the two creases within each triangle are the same. I have 

Figure 4.6. 
Family tree of the standard bases.

Figure 4.7. 
(a) The basic triangle. (b) Kite Base. (c) Fish Base. (d) Bird Base. 
(e) Frog Base.

inversion

(a) (b) (c) (d) (e)
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The repeating pattern of triangles—first observed by Eric 
Kenneway in his column in British Origami magazine, “The 
ABCs of Origami”—is more than a geometrical curiosity. As we 
increase the number of triangles, we also increase the number 
of long flaps in the resulting base. The first three crease pat-
terns suggest a simple relationship between the numbers of 
triangles and long flaps: 

These three crease patterns suggest that the number of long 
flaps is half the number of triangles in the base. But small 
numbers can be deceiving. A small number of examples can 
masquerade as many possible sequences—for the very next 
base breaks the pattern: 

shown all creases as generic creases in the figure to emphasize 
this commonality.

Two of these isosceles triangles can be assembled into a 
square, yielding the Kite Base. Four give the Fish Base. Eight 
give the Bird Base. Sixteen give the Frog Base. The pattern 
is clear. We could easily go to 32, in which case we would end 
up with the blintzed Bird Base. There’s no need to stop there, 
and origami designers haven’t. In the mid-20th century Akira 
Yoshizawa devised a Crab based on the blintzed Frog Base, with 
64 copies of the triangle; more recently, the crease pattern for 
my own Sea Urchin (Figure 4.8), which incorporates 128 copies 
of this triangle, creates a base with 25 equal-length flaps.

Figure 4.8. 
Crease pattern and folded form 
of Sea Urchin.

Base Triangles Flaps
Kite 2 1
Fish 4 2
Bird 8 4
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So the Frog has five, rather than eight, flaps, as the simple 
pattern would suggest. And the Sea Urchin really messes 
things up: 

You might find it an interesting experiment to fold the 
crease patterns that lie between the Frog and Sea Urchin 
into bases and count the number of long flaps in each (Hint: 
start with a blintzed Bird Base and blintzed Frog Base, but 
you will have to perform some additional manipulations to 
free the flaps).

So, there isn’t a simple relationship between the number 
of triangles and the number of flaps. But there is a relationship 
nonetheless. Let us draw an arc of a circle in the triangular 
unit; then draw each arc in the unit as it appears in the crease 
pattern of the base.

The basic triangle unit contains 1/8 of a circle. When the 
units are combined, however, the circular arcs combine with 
each other to form quarter-, half-, and whole circles. If we 
count the number of distinct circular pieces, we get in the Kite 
Base, one quarter-circle; in the Fish Base, two quarter-circles; 
in the Bird Base, four quarter-circles; and in the Frog Base, 
four quarter-circles plus one whole circle, making five sections 
in all. One, two, four, and five circles—these are the same 
numbers as the number of long flaps in each of the Classic 
Bases. (If we do the same to the Urchin pattern, we will find 

(a) (b) (c) (d) (e)

Figure 4.9. 
(a) The triangle unit, with inscribed circle. (b) Kite Base. (c) Fish 
Base. (d) Bird Base. (e) Frog Base.

Base Triangles Flaps
Frog 16 5

Base Triangles Flaps
Urchin 128 25
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25 circles or circular segments—and of course there were 25 
flaps as well.) Clearly, there is some relationship here between 
circles and flaps. But why circles? And what about the paper 
that is not part of any circle? Circles seem rather innocuous, 
but by drawing them onto a crease pattern, we have touched 
on a connection to the underlying structure of origami, which 
we will soon explore.

4.4. Designing with Bases
The Japanese designers of the past—and most of their  
modern successors—did not worry about units and circles,  
of course. For most of the history of folding, the Classic 
Bases were nothing more than starting points for origami de-
sign; you picked the base that had the right number of flaps.  
For a bird with folded wings, use the Bird Base. A human figure, 
with two arms, two legs, and a head, uses the Frog Base. But 
what about more complex figures? Insects and arthropods, with 
six, eight, ten, or more legs, wings, horns, pincers, and other 
appendages, became an enormous challenge. As early as the 
1950s, far-sighted origami designers made forays into these 
more complex bases. Yoshizawa, using a multiply blintzed base, 
produced his remarkable Crab with 12 appendages, while the 
sculptor George Rhoads exploited the blintzed Bird Base for 
several distinctive animals, including his famous Elephant. 
But these were the exceptions.

And so, the early days of origami design saw the use of 
the same bases over and over, to the point that they began to 
seem worn out. There are only so many treatments that can be 
applied to this small number of basic shapes. A few designers—
notably Neal Elias and Fred Rohm—developed innovative 
manipulations of the Classic Bases that opened up rich new 
veins of origami source material. For the most part, however, 
the Classic Bases are pretty well picked over.

Still, one occasionally finds a shiny nugget of originality 
among the tailings of the Classic Bases. Sometimes, a model’s 
structure simply calls for the flaps and proportions of a Classic 
Base, as in the designs shown in Figures 4.10–4.15, which are 
folded from the Windmill, Kite, Bird, and Frog Bases. Take, for 
example, the Stealth Fighter shown in Figure 4.10 as crease 
pattern and folded model. It is folded from the Windmill Base, 
which can be seen in its crease pattern.

Or can it? The crease pattern, which typically shows the 
major creases of the model, contains more creases than just 
those of the base. But if you focus on the longer creases, you 
can probably pick out the creases of a Windmill Base with some 
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of the flaps flopped around; perhaps it will help to show just 
the creases of the modified base (Figure 4.11).

When a model is folded from a base (whether one of the 
Classic Bases, or a new special-purpose base designed just for 
that model), if it has a linear, step-by-step folding sequence (as 

Figure 4.10. 
Crease pattern and finished model of Stealth Fighter, from a Windmill Base.

Figure 4.11. 
Crease pattern and folded form of the modified Windmill Base from 
which the fighter is constructed.
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most designs do), the base creases are made first and usually 
persist throughout the folding of the model. By examining the 
crease pattern for a model and identifying the base creases, you 
can gain information about the folding sequence for the model 
because the earlier steps will be devoted to construction of the 
base. The base creases tend to be longer than later folds in the 
sequence. Thus, for example, in the Snail shown in Figure 4.12, 
we can pick out several long creases in the pattern that identify 
the probable base, which is shown in Figure 4.13.

Figure 4.12. 
Crease pattern and finished model of Snail, from a Kite Base.

In this pattern, composed of only six creases, you can 
already see the basic structure of the snail: the tail, the two 
corners that become the antennae, and the long colored flap 
that becomes the shell.

The full pattern obtained by unfolding the folded model is 
often too cluttered to clearly discern the structure. It is more 
useful to show just the major creases, typically those when 
the base is complete but before the final shaping has begun. 
Throughout this book I will show crease patterns at this inter-
mediate stage of folding, along with a drawing of the shape that 
corresponds to the crease pattern and the folded model.

Interestingly, the more complicated the base is, the easier 
it often is to recognize in the crease pattern because its creases 
form a distinctive pattern. In the Valentine in Figure 4.14, it 
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is not particularly clear from the folded model where it came 
from, but in its crease pattern, its Bird Base heritage is un-
mistakably present.

Similarly, the outlines of a Frog Base are clearly visible 
in the lines of the Hummingbird in Figure 4.15.

Figure 4.13. 
The base creases (a Kite Base plus a single reverse fold) for the Snail.

Figure 4.14. 
Crease pattern, base, and finished model of Valentine, from a Bird Base.
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4.5. Simple Variations on Bases
To move out of the confines of the standard bases, in what I 
will call the early exploratory period of origami, the 1950s and 
1960s, many folders experimented with alterations and com-
binations of the bases. A not-uncommon tactic was to fold half 
of the square as one base and the other half as another: thus, 
a half-Bird, half-Frog Base, for example. However, with only 
a handful of bases around to start with, one quickly exhausts 
the possibilities of this technique.

The 1960s and 1970s saw another variation that can also 
lead to new structures: Use the crease pattern of the original 
base, but distort it in some controllable way. The most common 
application of this second approach is to offset the base, that 
is, shift the nexus of creases that typically arises at the center 
of the paper away from the true center, either toward an edge 
or toward a corner. Since the amount of shift was something 
that could be continuously varied, this technique provides 
a greater range of possibility than discrete combinations of 
fractional bases.

As an example, the crease pattern of a Bird Base can be 
shifted in two distinctly different ways that preserve some 
symmetry, as shown in Figure 4.16. The crease pattern can be 
shifted toward a corner or an edge.

Figure 4.15. 
Crease pattern, base, and finished model of Hummingbird, from a 
Frog Base.
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Neither of the two variations is aesthetically pleasing; the 
creases terminate in rather arbitrary locations, resulting in 
several points with ragged edges and others with a parallel-
edged strip running along one side. These excess bits will usu-
ally detract from the model unless they can be incorporated 
into the design—that is, used to create one or more additional 
features of the model. That this incorporation can be done 
successfully is illustrated by the Baby in Figure 4.17, which is 
based on an offset Waterbomb Base, and which uses the extra 
strip to realize the color-changed diaper. Can you identify the 
creases of the Waterbomb Base in the crease pattern? It will 
be a bit harder, because portions of the base creases have 
changed direction or been smoothed out in the course of fold-
ing the model, so they are not as evident. Nevertheless, you 
should be able to pick out the creases of a Waterbomb Base 
shifted toward an edge.

It is also possible to offset the central crease cluster while 
preserving the points where the creases all come together at 
the corners of the square. This eliminates the ragged points 
of the previous offsetting technique, but now the edges of the 
four points are no longer aligned. That may or may not be a 
drawback; two of the points are now longer than the other 
two, making the base perhaps better suited to other subjects. 
Such a base is said to be a distorted base.

Figure 4.16. 
Left: a Bird Base. Middle: the crease pattern shifted toward a corner. 
Right: the crease pattern shifted toward an edge.

new
new
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Figure 4.17. 
Crease pattern, base, and folded model of Baby, from an offset 
Waterbomb Base.

Figure 4.18. 
Left: an ordinary Bird Base. 
Right: a distorted Bird Base with the corners of the base kept at the 
corners of the square.

© 2012 by Taylor & Francis Group, LLC



71Chapter 4: Traditional Bases

There are many more distortions that can be performed 
on the Classic Bases and their combinations, but they don’t 
change the basic structure. A Bird Base has four long flaps; 
a distorted Bird Base still has four longish flaps, even if one 
or two are now a bit longer than the others. Offsetting and 
other distortions can vary the distribution of edges around a 
flap, but they don’t create entirely new flaps. Even if they did 
not constitute such well-trodden turf, the Classic Bases don’t 
have enough variety among them to serve as a starting point 
for all origami subjects. Quite often, however, the origami 
designer will find that a Classic Base suffices—almost. The 
situation will arise when you need just a bit more—an extra 
flap, a single longer flap, a cluster of points where one exists. 
In such cases, we’ll need to deviate from the standard bases, 
which we can do in several ways. We can convert single points 
to multiples, we can add extra paper to an existing base, and 
finally, we can design an entirely new custom-purpose base 
starting from the structural form of the model. Each of these 
three approaches is a stage of origami design, each moving 
farther into new design territory.
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Folding Instructions

Stealth Fighter

Snail

Valentine

Ruby-Throated Hummingbird

Baby
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5. Fold the top and
bottom edges to the
center of the paper.

6. Pull the corners out
to the sides and pinch
them in half.

7. Flatten the corners,
making a sharp point (the
left side is shown
completed here).

3. Fold each corner in half
along an angle bisector and
unfold.

4. Fold the side edges in to
lie along the vertical center
line.

2. Fold the paper in half from
top to bottom and unfold.

1. Begin with the white side
up. Fold the paper in half
from side to side and
unfold.

Stealth Fighter
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8. Repeat on the bottom
two corners.

9. Fold the two lower
points down as far as they
will go.

10. Fold the model in
half and rotate 1/4 turn
clockwise.

1/4

11. Reverse-fold the left side
downward symmetrically.

12. Fold one layer up in
front and one to the rear
behind.

13. Reverse-fold the pair of
flaps as if they were a
single flap (they are joined
about halfway down).

14. Reverse-fold the tips of
each corner so that the raw
edges line up.

15. Reverse-fold the bottom
corners. Valley-fold the
leading edge of the near
wing; repeat behind.

16. Reverse-fold a
hidden layer down from
the inside of the bottom
of the model.

17. Spread the wings
and tail.

18. Finished Stealth Fighter.
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1. Begin with a square, white side up.
Fold and unfold along one diagonal.

2. Fold the edges to the
diagonal crease.

3. The Kite Base.
Turn the paper over.

4. Fold the top flap down
so that the left edges are
aligned and the crease goes
through the right corner.

5. Unfold.

6. Repeat steps 4–5
in the other direction.

7. Fold the paper in
half while reverse-
folding the top
corner downward.

8. Fold the near edge along the
angle bisector (the corner
touches the edge at an existing
crease). Repeat behind.

9. Fold and unfold
along the angle bisector,
creasing lightly. Repeat
behind.

Snail
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10. Rotate the model
clockwise slightly more
than a quarter turn.

1/4

11. Valley-fold the right corner in half
while reverse-folding all of the excess
paper up as high as possible. Repeat
behind.

12. Valley-fold the near flap
upward. Repeat behind.

13. Mountain-fold the colored
corner behind. Repeat behind.

15. Pleat the colored flap.

16. Tuck the pleat
under the white layer.

17. Mountain-fold the colored flap
behind and then bring it in front of
the white point at the lower left.

18. Mountain-fold the
colored flap around again.

19. Mountain-fold two more
times in the same way.

20. Mountain-fold the bottom
edges. Valley-fold the
antennae out to the sides.

21. Finished Snail.

14. Mountain-fold the edge of the
near flap behind. Repeat behind.
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1. Begin with a square, colored
side up. Fold and unfold along the
diagonals. Turn the paper over.

2. Fold the paper in half from edge
to edge and unfold. Repeat the other
direction.

3. Bring all four corners together at
the bottom, forming a Preliminary
Fold.

4. Petal-fold the front and
back flaps to form a Bird
Base.

5. Fold one flap
down in front and
one behind.

6. Fold one flap to the
right in front and one to
the left behind.

7. Fold one flap up in
front and back down.
Repeat behind.

8. Unfold the model
completely.

Valentine
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9. Extend an existing crease to the
lower left edge. Repeat above.

10. Fold the bottom corner up; the
crease hits the edge at the same place
as the last crease. Repeat with the top
corner.

11. Refold the Bird Base, using the
existing creases (you will have to
make new creases through the colored
corners).

12. Fold the bottom
left corner up to the
center line; the fold
runs along an
existing crease. You
don’t need to make
this fold sharp.

13. Shift some
paper upward as
far as possible,
releasing the
trapped paper
underneath the
flap.

14. Squash-fold the
corner, swinging the
excess paper over to
the left.

15. As you did in
step 13, shift some
paper upward,
releasing the trapped
paper underneath.

16. Bring a raw
edge in front of
the flap.

17. Open out
the raw edges
slightly.

18. Fold the two top
near flaps downward
while folding the
blunt interior flap
underneath. Close
the model and flatten
firmly.

19. Repeat steps
12–19 behind.
Then rotate the
model 1/2 turn.

12–19

1/2

20. Divide each
vertical flap into
thirds with valley
folds.

21. Reverse-fold
each flap up and
down on the
existing creases.
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22. Fold and unfold
through the near layers
only. Repeat behind.

23. Unfold to step 20.

24. Reverse-fold both
points as far downward as
possible.

25. Reverse-fold the two
points to the sides. Note the
reference points for the two
reverse folds.

26. Reverse-fold two edges
upward on each side.

27. Partially open out the left
side. The model will not lie flat.

28. Valley-fold the flap on the existing crease;
simultaneously flatten the interior pleat and
mountain-fold its edge underneath. The model
will not lie flat.

29. Push down on the triangle
and close the model back up.

30. Repeat steps 27–29
behind and on the right.

27–29 27–29
27–29

31. Valley-fold the near
edge of each flap. Repeat
behind.

32. Wrap a raw edge from the inside
of each flap to the front; repeat behind.
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33. Steps 34–41 focus on
the tips of the white flaps.

34. Double-reverse-
fold the tip inside.

35. Outside reverse-
fold the flap.

36. Pull out some
loose paper.

37. Shift the interior
point so that its tip lies
along the center line.

38. Crimp and rotate the
end of the flap so that it
aligns with the shaft
emanating to the left.

39. Closed-sink
the corner.

40. Mountain-fold the
bottom edge underneath.
Repeat behind.

41. Like this. 42. Repeat steps 34–38
(stop at 38!) on the right.

43. Crimp the left side
upward so that the two
halves of the white shaft
line up.

34–38

44. Round the heart with
mountain folds. Dent the
tail of the arrow to make it
slightly three-dimensional.

45. Finished Valentine.
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Ruby-Throated  
Hummingbird

1. Begin with a square, white side up.
Fold the paper in half in both directions
and unfold. Turn the paper over.

2. Fold and unfold
along the diagonals.

3. Fold the bottom left corner to
the center and unfold, making a
small pinch along the diagonal.

4. Fold the bottom left
corner to the point you
just made and unfold.

5. Fold the corner up along
the diagonal; the crease hits
the mark you just made.

6. Fold the corner up
again on the crease
you made in step 4.
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1/8

7. Turn the paper over from
top to bottom.

8. Fold a Preliminary Fold. Rotate
the paper 1/8 turn clockwise.

9. Squash-fold the
near right flap.

10. Petal-fold the edge. 11. Fold the flap down. 12. Sink the point up
inside the model.

9–13 9–13 9–13

13. Fold one layer to
the right.

14. Repeat steps 9–13
on the left.

15. Repeat steps 9–13
on both sides behind.

16. Sink 1/3 of
the top point.

17. Fold one layer to the
right in front and one to
the left in back.

18. Fold the near layer of the left edge
to the center line and unfold. Do the
same on the right, but don’t make the
crease sharp below the horizontal edge.
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19. Reverse-fold the flap out to
the side so that its top edge is
horizontal. Note where the reverse
fold goes under the folded edge.

20. Swivel-fold the edge
on the existing creases.

21. Swing the flap over
to the right.

22. Swivel-fold the flap
to match its other side.

23. Valley-fold the edge
to the center line.

24. Turn the model over.

25. Fold a pair of layers
over to the right.

26. Repeat steps
18–23 on this side.

18–23

27. Fold one layer to the left in
front and two layers in back to
make the model symmetric.
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28. Fold one layer out to the sides.
The edge view at the top shows
which layers come out.

29. Pull the layers out
farther to the sides.

30. Turn the model over
from side to side.

31. Mountain-fold the edges underneath, but
only make the creases sharp on the upper part
of the flap; the lower part should be rounded
and three-dimensional.

32. Form a pleat in the flap so that the upper
part bulges upward; make a smooth valley crease
at the base of the tail, rounding it slightly.

33. Mountain-fold the flap
underneath to lock the pleat.
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34. Mountain-fold a bit of the tip
underneath to further lock the pleat.
Crease the bottom point into sixths.

35. Mountain-fold the wings away from you.
Curve the far layers toward you and near layers
away from you, forming two halves of a
cylinder. The next view is from the side.

36. Sink the belly to round it.
Crimp the head downward and
crimp the point in and out to
form a beak.

37. Sink 1/3 of the beak,
using the existing creases.

38. Round the leading edge of the
wing. Reverse-fold the wing tips.
Reverse-fold the corner of the head
near the beak. Repeat behind.

39. Mountain-fold the edges of
the beak underneath. Round the
wing tips further with tiny
reverse folds.

40. Tuck the colored region up inside the
head, crimping, if necessary; it should
hook behind the inside of the beak. Shape
and round the body. Pleat the wings.

41. Finished Ruby-Throated
Hummingbird.
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Baby

1. Fold the paper in half
and unfold.

4. Fold the right side
over to the left, making
the crease hit the edge at
the same place as the
mark.

5. Squash-fold both
flaps symmetrically.

6. Crease the angle bisectors. 7. Fold the left flap over along a
vertical crease that runs through the
intersection of the horizontal edge
with the crease you just made.

2. Fold the top left corner
down to touch the horizontal
crease; make a pinch along the
top edge and unfold.

3. Fold the paper in half
on the existing crease.
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19. Make a crease that
connects points A and B.

A

B

18. Fold and unfold
along an angle bisector.

17. Unfold to step 15, and
repeat steps 15–17 on the right.

15–17

14. Fold the bottom
edge up and unfold.

15. Fold the left flap over along
a vertical crease that lines up
with the edge behind it.

16. Fold it back to the left along a
vertical crease that lines up with
the center line. The flap also lines
up with the flap behind it.

11. Repeat steps 7–10
on the right.

12. Turn the paper over. 13. Fold the bottom edge up to the left
diagonal, crease only as far as shown,
and unfold. Repeat on the right.

7–10

9. Unfold to step 6. 10. Reverse-fold the flap in
and back out, using the creases
you made in steps 6–8.

8. Fold it back to the left along a
vertical crease that lines up with
the center line of the model.
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29. Reverse-fold the corner
up inside the model.

30. Repeat steps 27–29
on the right.

31. Fold the bottom
edge back down.

27–29

27. Squash-fold the
exposed corner.

28. Reverse-fold the corner.26. Fold a single layer of the
bottom edge up, but don't
flatten the paper.

23. Fold the bottom edge up. 24. Crimp the flap using the
existing creases and incorporating
the small pleat along the diagonal.

25. Repeat step 24 on the right.

20. Begin to fold the left edge
over along the existing crease,
but don't make the crease sharp
at the bottom.

21. Squash-fold the edge to the
right. The mountain fold and the
hidden valley fold (indicated by an
X-ray line) are on existing creases;
the visible valley fold forms when
you flatten the model.

22. Unfold to step
18 and repeat steps
18–22 on the right.

18–22
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38. Sink the point up into the
model. Repeat behind.

39. Swing one flap from left
to right in front and one
from right to left in back,
incorporating the reverse
fold shown on each side.

40. Reverse-fold
the two corners.

35. Fold one flap from left to
right in front, and one from
right to left behind.

36. Squash-fold the
corner. Repeat behind.

37. Fold the point down.
Repeat behind.

32. Pull the loose edge as far
down as possible on both the
left and right flaps.

33. Mountain-fold the
edges underneath.

34. Squash-fold each
corner, making the valley
folds on existing creases.
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41. Fold one narrow layer over
to the right; the top of the
model will not lie flat.

42. Fold the white layer up. 43. Fold up one more layer.

44. Close the left side up and
repeat steps 41–44 on the right.

48. Fold the legs forward
and squash-fold the feet.

49. Shape the feet with
mountain folds. Put your
finger up inside the model
and round the body
slightly. Position the arms.

50. The finished Baby.

45. Crimp the head downward
in front and, symmetrically, in
back; simultaneously push in
the top of the head to make it
three-dimensional.

46. Reverse-fold the
corners of the head to
round it; repeat behind.

47. Pleat the hands
and fold them
toward the front.

41–44

Folding Instructions: Baby
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5
he currency with which the origami designer most 
often deals is the point (or flap). Subjects can be 
classified by the number of significant points that 
they have. A snake has two (a head and a tail); 
a standing bird has four (six, if the wings are  

outstretched). A mammal has six (four legs, a head, and a tail), 
while a spider has eight. A lobster may have twelve; a centipede, 
one hundred. The number of points in the subject dictates the 
number of flaps needed in the base from which it is folded.

The number of points assigned to the subject depends not 
only on the subject, but also upon what the designer defines 
as a “significant” point. Quite often, minor features such as 
ears may be derived from small amounts of excess paper in 
the model and may be safely ignored in the initial stages of  
design. However, the larger the point is, the more important 
it is to include it in the ground stages of design.

Most people’s first designs are modifications of another 
model. One’s first structural design might very well be a modi-
fication of an existing base, either a Classic Base or perhaps a 
more recent base from the origami literature. A prime reason 
to modify a base is to obtain one or more extra flaps. Short of 
redesigning the base entirely, it is often possible to convert one 
flap into two, three, or more flaps by folding alone, a process I call 
point-splitting. The ability to split a point—without cutting—
is a useful tactic to have in the designer’s arsenal, and it also 
provides tangible evidence of the mutability of origami bases.

5.1. The Yoshizawa Split
Of course, there is always one way to split a point—cut it in 
two. Traditional Japanese designs quite often did split points in 

Splitting Points
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this way (the custom of one-piece, no-cut folding is a relatively 
modern restriction) and many of the designers of the 1950s 
and 1960s had no compunctions about cutting a point into two 
or more pieces to make ears, antlers, wings, or antennae. Isao 
Honda—who for many in the West defined 1960s origami design 
via his English-language publications—used cuts as a matter of 
routine. Yoshizawa, the man from whom Honda derived many 
of his designs, also on occasion used cuts, but even in the 1950s 
had developed what is to my knowledge the first technique of 
splitting a point into two by folding alone. This procedure is 
illustrated in Figure 5.1, on a Kite Base flap. (I encourage you 
to fold a Kite Base and try it out.)

1. Fold the top of the flap down and
unfold.

2. Sink the tip on the existing
creases.

3. Mountain-fold a portion of the
flap behind. The exact amount isn’t
critical. Turn the paper over.

4. Fold the flaps up and spread-sink
the corners.

5. Finished split flap. The dashed
line shows the outline of the
original flap.

Where once there was one flap, now there are two flaps, 
albeit considerably shorter than the one we started with (which 
is indicated by the dashed line). This maneuver is particularly 
nice for turning one long flap into a short pair of ears, which is 
precisely what Yoshizawa used it for.

Figure 5.1. 
Sequence for splitting a Kite Base flap into two smaller points.
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Of course, the resulting points are smaller than the one 
we started with; nothing comes for free. Our folding sequence 
was not particularly directed at making them long, which 
leads to the question: How long could they get?

That question actually raises a more fundamental one: 
How does one quantitatively define the length of a flap? Intu-
ition suggests that we define the length of a flap as the distance 
from the baseline to the farthest point of the flap, but this only 
pushes the question down a level: What would we mean by 
the baseline of the flap? Let us define the baseline of a flap as 
an imaginary line drawn across the flap, above which the flap 
can freely move. While this still permits some wiggle room 
in the definition, it allows us to define a baseline for the two 
flaps in the split point above as the obvious horizontal crease; 
in this case, we can clearly define the length of the two flaps 
as shown in Figure 5.2.

Figure 5.2. 
Comparison of the original and 
newly created flaps.

6. The new flaps are shorter than
the original we started with.

A

The two new flaps are less than 1/4 of the length of the 
original—not a very good tradeoff, it would seem. That gets us 
back to our question: How long can we make the two flaps? If 
you have folded an example to play with, you can answer this 
experimentally, by taking flap A and gently pulling it lower 
down while massaging the spread-sunk triangles and allowing 
them to expand toward each other, as shown in Figure 5.3. 
(It is actually easier to do this before having ever pressed the 
two triangles flat.)

As Yoshizawa pointed out in his opus, Origami Dokuhon 
I, the optimum length is attained when the distance from the 
top edge down to the valley fold is equal to half the width of 
the top edge.

Clearly, these are the longest flaps we can make, at least, 
by this technique. Note that the baseline of the flaps moved 
downward in the process. Quite often, we have the baseline 
of the flap already defined and we’d like to make the longest 
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points possible extending from that baseline. Examination of 
the geometry of the point pair shows that, with a few precreases, 
we can go straight to the optimum-length fold, as shown in 
Figure 5.5.

Even in the optimum-length case, the two flaps you end 
up with are much shorter than the original flap you started 
with. The ratio of their lengths can be worked out using a bit 
of trigonometry.

Each of the short flaps is 28% of the length of the long 
flap; in other words, we’ve given up almost a factor of four in 
length. This seems unnecessarily wasteful. One might think 
that the length of a long flap could somehow be divided up when 
we split the flap; one might think we should be able to divide 
a long flap of length 1 into two flaps of length 1/2, or three of 
length 1/3, and so forth.

And in fact, we can do better than the Yoshizawa split. 
This procedure is quick and (relatively) simple, and it’s  

short flap
long flap

=
tan 33.75°
tan67.5°

≈ 0.277

Figure 5.3. 
Construction of the maximum-
length pair.

Figure 5.4. 
First fold for the optimum-
length pair.

7. Grasp flap A, and pull it lower
while expanding the spread-sunk
corners. Flatten when the two
spread-sunk triangles meet in the
middle of the paper.

A

8. The maximum length pair of
points.

. (5–1)
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3. Fold and unfold along a
horizontal crease that passes
through the intersection of the two
bisectors.

2. Fold and unfold along angle
bisectors.

1. Fold and unfold to define the
desired location of the base of the
two flaps.

6. Finished pair of flaps.5. Mountain-fold the far edge
behind while spread-sinking the
corners. Turn the model over.

4. Sink the point on the crease you
just made.

certainly good enough to generate a short pair of ears, but it 
would be nice to do better—for example, to take a three-legged 
Bird Base animal and give it that elusive fourth leg.

5.2. The Ideal Split
The key to making two longer flaps is to ignore the foreground 
and examine the background; that is, turn our attention away 
from the flaps themselves and instead, look at the space 
around the flaps. The thing that makes two flaps two instead 
of one is not the paper making up the flaps; it’s the space 
we’ve created between the flaps that defines the pair. What 
limits the length of the flap is the length of the gap. And that 
is significant because the gaps as well as the flaps consume 
paper—and so we must allocate paper for both.

A small thought experiment will bring this out. Suppose 
you wished to travel from the tip of one flap to the tip of the 

Figure 5.5. 
Alternate folding sequence for the optimum-length pair of points.
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other, but you could only travel along the paper—you couldn’t 
jump across the gap. Imagine a microscopic bookworm that 
travels within a sheet of paper—that is, he crawls between the 
two sides of the sheet but never ventures to either surface. (He 
is a very shy bookworm.) How far must he crawl to get from the 
tip of one flap to the tip of the other? Even without knowing 
anything about the folded structure of the two flaps, we can 
say for certain that the bookworm must travel from the tip of 
one flap down to its baseline, then back out to the tip of the 
other flap (at a minimum) because there’s no shorter path that 
doesn’t require the bookworm to leave the paper, as shown in 
Figure 5.6. So the bookworm must travel the sum of the lengths 
of both flaps. (And since it may not be possible to go from the 
baseline of one flap directly to the other flap via the interior of 
the paper, the journey could be even longer.)

Figure 5.6. 
Path followed by an origami 
bookworm.

Suppose, for the moment, that our bookworm were further 
restricted to traveling only along folded or raw edges. Then 
there is only a small number of paths he could travel along. 
The two shortest paths, labeled A and B, are shown in Figure 
5.7 by dashed lines (in some cases, he is traveling along hidden 
layers of paper). A third path, labeled C, is shown that does 
not follow existing folds.

It helps to distinguish the different paths by simultaneous-
ly examining the crease pattern and the model with the paths 
drawn on each. These are shown together in Figure 5.7.

Of course, paths A and B are only two of the possible paths 
the bookworm could take, but these are the two shortest paths 
that travel along folded or raw edges of the paper. Neither, 
however, is the shortest possible path from the bookworm’s 
point of view, which is the same whether the paper is folded 
or unfolded. That shortest path is easy to draw on the crease 
pattern; it’s a straight line. It’s a bit harder to work out what 
it is on the folded model, lying as it does in hidden layers of 
paper, but it is shown as path C in Figure 5.7.
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C
X Y

B
X Y

A

X Y

C

X Y

B

X Y

A

X Y

Now, what’s interesting is that although path C is the short-
est path from tip to tip in the unfolded paper, it’s clearly not 
the shortest possible path in the folded model. As can be seen in 
the figure, the bookworm backtracks a bit and actually travels 
somewhat below the baseline of the two points. This means that 
we’ve devoted more paper to the gap than we really needed to—
paper that could have been used to make longer points.

In the most efficient possible structure, the amount of 
paper that is used to create a gap between two points would be 
as close as possible to the minimum required. In other words, 
if we compared the tip-to-tip path in the folded model and the 
crease pattern, they would look something like Figure 5.8.

Of course, we don’t know what the rest of the crease 
pattern looks like or even what the folded model looks like. 
But we’ve identified several salient features of both. We 
know where the tips of the two points are (indicated by the 
black dots), and we know how deep the gap is in the folded 
model (half the distance between the point tips on the crease 
pattern). Knowing the depth of the gap, we also know where 
the baseline of the two flaps must be, and we can make cor-
responding creases on the paper.

Figure 5.7. 
Upper row: path in the folded form. 
Bottom row: path traveling along the surface of the unfolded paper.
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Now, we have two points with a gap between them, and 
the shortest bookworm path on the crease pattern is also the 
shortest bookworm path on the folded model. This strikes 
precisely the right balance between paper devoted to the flaps 
and paper devoted to the gap. The paper saved from the gap 
can go into making longer flaps. And indeed, a comparison of 
the folded and original flap in Figure 5.10 shows that the two 
flaps are indeed longer than in the simpler split.

The ratio of the lengths of the new and original flaps is 

which is almost 50% longer than that obtained by simply sink-
ing and spread-sinking the corners. This is, in fact, the longest 
possible pair of flaps that can be made from a standard Bird 
Base corner flap, and so I call it an ideal split.

One quibble you may have: In this form, the two flaps over-
lap each other while the Yoshizawa-split flaps have daylight 
between them. So the structures are not perfectly comparable. 
It is possible to further sink and squash the ideal split to put 
a gap between the two flaps (at the cost of a slight reduction of 
gap depth). But if you fold the two pairs in half (as one might, 
for example, in making a pair of ears), then the two arrange-
ments can be compared directly, as shown in Figure 5.11.

Figure 5.8. 
The optimum tip-to-tip path. 
Top: path in the folded model. 
Bottom: path through the paper. 
The creases (and the exact 
shape of the folded model) are 
not yet specified.

,
short flap
long flap

=
tan 45°

tan67.5°
≈ 0.414 (5–2)
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Figure 5.9. 
Folding sequence for the ideal split.

Base

3. Fold the sides in.

Base

2. Now we’ll refold the model. The
top point isn’t used; fold it down.

Base

1. For an optimally efficient point split,
the point where the base crease hits the
edge is separated from the desired point
tip by a distance equal to half the
separation between the point tips.

6. Fold the excess paper from side to
side. Flatten firmly.

5. Squeeze the sides in so that the
extra paper swings downward,
using the creases on the far layers
that you made in the previous step.

Base

4. Make creases that connect the
edges of the base with the points
that will become the tips of the two
flaps. Turn the model over.

Base

9. Crease pattern.8. The finished split point. Now the
shortest path on the crease pattern is
also the shortest path on the folded
model.

7. Reverse-fold the edge inside.
Observe that the edge of the reverse
fold (the black dot) lines up with the
previously defined base.
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The ideal split takes more folds to perform if you fold it 
as shown in Figure 5.9, but that sequence was designed to 
illustrate the connection between the paths and crease pat-
tern. That’s not necessarily the most straightforward way to 
fold. Once you’ve worked out the crease pattern for a model or 
technique, it’s worthwhile going back and experimenting with 
different ways of folding. There are many ways of performing 
an ideal split on a standard flap. The sequence in Figure 5.12, 
which was developed by John Montroll, is one of the most 
elegant.

There are numerous variations, both in arrangements of 
layers (note that this sequence has a slightly different arrange-
ment of the layers) and in the folding sequence that gets you 
to the finish.

Point-splitting can be used to breathe new life into old 
structures. For example, few shapes are as picked-over as the 
venerable Bird Base, possessed of four large flaps, correspond-
ing to head, tail, and two wings. But by splitting the tail point, 
we can create two legs instead of a tail; by splitting the head 
point, we can create a head with an open beak, a head with a 
crest, or quite another flying beast altogether: a Pteranodon.

You will find folding instructions for this figure at the end 
of this chapter. It includes both ideal and Yoshizawa splits. 

Figure 5.10. 
The finished point pair compared 
to the original flap length.

Figure 5.11. 
The ideal split is about 50% 
longer than the Yoshizawa split 
for the same starting flap.
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Splits can be used for more than point multiplication; as an 
auxiliary benefit, by splitting the large central point with a 
Yoshizawa split, we can reduce its height while preserving the 

Figure 5.12. 
Folding sequence for the ideal split, after Montroll.

7. Reverse-fold the flap through the
model. Turn the model over.

8. Reverse-fold the flap back to the
center line.

9. Finished ideal split.

4. Squash-fold the edge and swing
the flap over to the left on a vertical
fold.

5. Pull up the loose edge as far as
possible, releasing the trapped paper
under the flap.

6. Outside-reverse-fold the white
point.

1. Fold the top of the flap down. 2. Fold the flap up so that its right
edge is aligned with the layer
underneath.

3. Pull out the loose edge as far as
possible.
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Figure 5.13. 
Crease pattern, base, and folded model for a Pteranodon.

Figure 5.14. 
Crease pattern (upper row) and folded flap (lower row) for three types 
of points: (left) corner flap, (middle) edge flap, (right) middle flap.

3. Top: crease pattern for a middle
flap. Bottom: the folded flap.

2. Top: crease pattern for an edge
flap. Bottom: the folded flap.

1. Top: crease pattern for a corner
flap. Bottom: the folded flap.
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flapping action, so when you pull its head and legs like the 
traditional flapping bird, this Pteranodon flaps its wings.

5.3. Splitting Edge and Middle Flaps
The folding sequence shown in Figure 5.12 works for a corner 
flap, a flap formed from a corner of the square, which describes 
the main flaps of the four Classic Bases. In addition to four 
corner flaps, the Frog Base possesses a different type of flap: 
Its central point comes from the middle of the paper, a so-called 
middle flap. Furthermore, the smaller points on a Frog Base 
come from the edge of the paper, an edge flap. You might ask, 
is it possible to split edge and middle flaps?

Indeed it is, although the layers get thicker and less 
manageable as you move from corner to edge to middle flap. 
The process is relatively straightforward for an edge flap. 
An edge flap still has two raw edges, and so it can be treated 
like a corner flap and split into two points in the same way 
as a corner point. In fact, the folding sequence illustrated in 
Figure 5.12 may be used as well on an edge flap.

However, a middle flap has no raw edges, which played a 
prominent role in the folding sequence of Figure 5.12. But we 

Figure 5.15. 
A middle flap can be constructed by stitching together four corner 
flaps and their crease patterns along the raw edges.

1. Assemble four corner split crease
patterns ...

2. …to obtain the crease pattern for
a middle split.
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12. There are four edges on the
top right; pull out as much of
the loose paper between the
third and fourth edges as
possible. A hidden pleat
disappears in the process.

8. Close the
model back
up.

1. Begin with a
Frog Base. Fold and
unfold to define the
baseline.

3. Pleat and fold a rabbit
ear from the thick point,
using the existing creases.

6. Fold one layer to the
right, releasing the trapped
paper at the left that links it
to the next layer.

14. Swing the
point back to the
right.

10. Swing the
point over to the
left.

5. Wrap one layer
of paper to the
front.

13. Pull out the
loose paper
between the
first and
second layer.

9. Repeat steps
6–8 on the next
two layers.

2×, 6–8

2. Top of the model.
Fold and unfold.

7. In progress.
Pull paper out
from here.

4. Fold and
unfold through all
layers.

15. Repeat steps
12–13 on the
left.

11. Repeat steps
6–10 on the
right.

6–10

12–13

16. Fold and
unfold.

18. Rearrange the layers
at the top so that the
central square forms a
Preliminary Fold.

17. Open-sink the
point. You will have to
open out the top of the
model somewhat to
accomplish this.

19. Fold one layer to the
right in front, and one to
the left behind. The
model should be
symmetric, as in step 1.
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can get an idea of what is possible by examining the crease pat-
terns of corner, middle, and edge flaps shown in Figure 5.14.

As Figure 5.14 shows, the crease pattern for an edge flap 
is simply that of a pair of corner flaps, and that of a middle 
flap is four corner flaps; edge and middle flaps themselves 
can be made by sewing together corner flaps along their  
raw edges.

It thus makes sense to see if the analogy continues. For 
example, is it possible to put together the crease patterns 
for four split corner flaps to get the crease pattern for a split 
middle flap?

It is, and the result is shown in Figure 5.15. This can be 
folded up. The sequence to fold it directly from a middle flap 
is quite challenging, however, which perhaps accounts for its 
rarity in published origami designs. One possible sequence 
is shown in Figure 5.16. You can try this sequence on the top 
of a Frog Base.

When you split a middle flap, you obtain four smaller 
flaps. (Similarly, an edge point can be split into either two 
or three flaps, depending on how you orient the creases with 
respect to the edge.) The split middle flap gives rise to an 
interesting relationship. Each of the four resulting flaps has 

Figure 5.16. 
Folding sequence to split a middle flap into four smaller flaps.

20. Petal-fold.

24. Closed-sink the next
pair of edges.

22. Fold and unfold.

26. Finished four points.

21. Fold the flap
back upward.

25. Repeat steps 20–24
behind.

20–24

23. Closed-sink the edges
on the creases you just
made.
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a length 0.414 times the length of the flap that you started 
with, which means that the total flap length—the sum of the 
lengths of the four created flaps—is four times that ratio, or 
1.657 times the length of the starting flap. In other words, the 
total length of the created flaps is actually longer than that of 
the flap you started with.

Since the result of a split middle flap is four more middle 
flaps, these may be thinned and split again by the same process, 
and the process repeated ad infinitum. At each repetition, the 
total flap length increases by a factor of 1.657. The somewhat 
surprising implication is that the total flap length increases 
without limit. Of course, the number of layers increases ex-
tremely rapidly as well, setting a practical upper limit to flap 
multiplication.

5.4. More Complex Splits
One can split multiple flaps to different depths to achieve dif-
ferent effects and further variation. We saw in the flapping 
Pteranodon that splitting two of its flaps could be used to extend 
the life of the Bird Base. A Bird Base, of course, has a total of 
four flaps. All four can be split, yielding structures that let us 
move away from birds and into other kingdoms. Splitting all 
four points of a Bird Base gives enough small flaps to make a 

Figure 5.17. 
Crease pattern, base, and folded model of the Goatfish.

© 2012 by Taylor & Francis Group, LLC



109Chapter 5: Splitting Points

variety of fish with dorsal, ventral, anal, caudal, and pectoral 
fins, as the example shown in Figure 5.17 illustrates.

By using this structure and varying the depth of the 
splits and the shaping and orientation of the resulting flaps, 
you can create quite a wide variety of fish. The Goatfish also 
illustrates another type of split—splitting one flap into three 
(which are used for the lower jaw and barbels). You will find 
a folding sequence for this new split in the instructions for 
the Goatfish at the end of this chapter.

In fact, there are many ways to split a point, and a point 
can be split into two, three, four, five, or more points. We’ve 
already seen two ways to split a point into two; here is another 
way in Figure 5.18, which also readily generalizes to three or 
four smaller points.

Figure 5.18. 
Crease patterns for a kite flap and the flap split into two, three, and 
four points. To compare scales, the downward diagonal crease A is 
in the same place in all four patterns.

A A A A

The shaded regions in these patterns go unused and 
would typically be folded underneath. Rather than drawing 
in the creases they would incur, I’ve simply left them blank 
to emphasize the common structure of the three splits.

These three patterns are part of a family that can easily 
be extended to larger numbers of points. You can, of course, use 
these three patterns as recipes to be called upon whenever two, 
three, or four points are needed, but it is much more useful to 
examine their structure, to break them down into components 
and understand the contribution of each component.

The first part of this examination is to identify the re-
gions of the crease patterns that become the tips of the vari-
ous points. Since the folded flaps come to sharp points, their 
tips correspond to single points on the crease pattern. These 
points are identified in Figure 5.19 by dots.

Now, as we saw with the Yoshizawa split, what defines 
two or more points is not so much the points themselves, 
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but the presence of a gap between them. If we examine the 
crease patterns for the two-, three-, and four-point patterns, 
we see a common wedge of creases that appears in every pat-
tern. Figure 5.20 shows one instance shaded in each of the 
three patterns.

1 1

2

1
2

3

1 2

3

4

Figure 5.19. 
Split points with the point tips identified.

Figure 5.20. 
The three patterns with the common wedge of creases.

Figure 5.21. 
Left: the crease pattern on the 
wedge. 
Right: the folded structure.

1

2

1

2

3

1 2

3

4

If we cut out just this wedge from any one of the patterns 
and fold it up, we get the structure shown in Figure 5.21.

Two points have one copy of this wedge, three points have 
two, four points have three. Crease patterns with progres-
sively larger numbers of points include progressively larger  
numbers of copies of a basic element. This is not particularly 
surprising. What is interesting, and perhaps just a bit unex-
pected, is that the basic unit of replication is not a single flap; 
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instead, the unit that is replicated is two half-flaps with a gap 
between them. As with the Yoshizawa split, the gap contains 
the secret to the structure.

So two, three, or four points may be constructed by us-
ing one, two, or three wedges. It should also be clear that the 
diagonal creases inside the wedge don’t have any particular 
significance. They’re there to make the points narrow, and 
they divide the angle into equal divisions so that in the folded 
result, the edges line up. But we could easily have used fewer 
or more diagonal creases and gotten fatter or skinnier points, 
as shown in Figure 5.22.

Figure 5.22. 
The wedge unit with the two points divided into successively greater 
numbers of divisions.

Figure 5.23. 
One, two, and three wedges 
define gaps between two, three, 
and four points.

We can build the number of points we need by assem-
bling the number of wedges we need: For N points, we use 
N–1 wedges.

But now, we need to overlay this structure on the origi-
nal flap and somehow connect the creases so that the whole 
thing folds flat. Note that the wedge assembly itself folds flat 
no matter how many we use, so the only thing we need to do 
is find the creases that enable the multipoint wedge group to 
connect to the rest of the flap.

Let’s use the three-wedge (four-point) module as an ex-
ample. If I simply overlay this pattern onto the original Kite 
Base, it is clear that with no other changes, the pattern will 
not fold flat (if it is not clear from the crease pattern, draw 
the pattern and try folding it.)
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However, since we’ll want the mountain folds at the edges 
of the wedge group to line up with the raw edges of the square, 
it’s clear that we’ll need a crease to bring those two lines to-
gether. That forces the two valley folds shown in Figure 5.24, 
each of which necessarily bisects the angle between the raw 
edge of the paper and the boundary of the wedge group.

Figure 5.24. 
Left: the wedge group, superimposed on a kite flap. 
Right: add two valley folds to make the raw edges line up with the 
edges of the wedge group.

A

B

The points where the valley folds hit the original kite 
folds—marked A and B in Figure 5.24—mark the transition 
region between the creases of the kite flap and the creases of 
the point group. The kite creases don’t propagate any farther 
toward the tip of the paper than these two intersections. Still 
more creases are required to allow the crease pattern to fold 
flat, however. While it’s possible to calculate the remaining 
creases necessary, it’s far easier to simply fold the model with 
the creases known so far and force it flat; the necessary creases 
will fall into just the right place, giving the final crease pattern 
shown in Figure 5.25.

This can be generalized to larger numbers of points, but 
you will find that with five or more points, you will have to 
use narrower wedges (with an apex angle of 30° rather than 
45°) in order to put the outermost points on the raw edge of 
the paper and not cut off some of the inner points, as shown 
in Figure 5.26.

Extending these creases to connect to kite flap creases is 
left as an exercise for the reader. Here’s another exercise: Can 
you use this technique on a Frog Base to create a frog with four 
toes on the forelegs and five on the back legs?
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Another family of splits works particularly well for odd 
numbers of points. It’s shown in Figure 5.27 for three, five, 
and seven points (what would you ever use seven small points 
for?), but this method, like the other, generalizes in an obvi-
ous way.

Figure 5.25. 
Left: the kite creases terminate at points A and B. 
Right: the completed crease pattern. (The corner goes unused and 
should be folded down before making the creases.)

Figure 5.26. 
Left: four wedges don’t let you put the outermost points on the raw 
edge of the flap. 
Right: using narrower wedges permits this construction to be 
extended to five or more points.

A

B

A

B

incompatible
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There is also a variation of this pattern that works for even 
numbers of points, which you might enjoy trying to discover. 
Which of the two families is better? It depends on the model. 
The two families may be distinguished by the major mountain 
folds: In the previous example, they radiate from a point; in 
this family, they are parallel. If the group of points is to be 
spread out (a technique that enhances the illusion of length), 
the radial family seems to fan more neatly; it’s ultimately a 
personal choice dictated by the aesthetics of the model.

I would encourage you to fold up a few bases and try out 
the different splitting techniques; then unfold them and exam-
ine the crease patterns. Most point-splitting sequences have 
a distinct pattern of creases in which the converging creases 
that form a flap suddenly stop at an obtuse triangular pleat 
that then radiates outward with creases that form two, three, 
or more points.

5.5. More Applications of Splitting
Once you become familiar with point-splitting, you can use 
it in many ways to form pairs of features. The crease pattern 
in Figure 5.28 is the base for a Walrus. Can you elucidate its 

Figure 5.27. 
Crease patterns for splitting a 
point into three, five, and seven 
smaller points.
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structure from the crease pattern? It is recognizably a ver-
sion of a Bird Base (to be precise, a stretched Bird Base), but 
two opposite flaps have been split—to make the tusks at one 
end and the tail flippers at the other. Figure 5.28 shows the 
crease pattern, the base, and the folded model. From these 
clues, you should be able to reconstruct the model entirely. 
(If you can’t fold the model from the crease pattern, base, and 
folded model, full instructions may be found in books cited in 
the references.)

A more sophisticated form of point-splitting is employed 
in the model whose crease pattern is shown in Figure 5.29. The 
Grasshopper is also clearly from a Bird Base, but with three 
splits. The central point has been sunk and Yoshizawa-split; 
then two of the four long flaps have also been split into three 
points each. This, too, is a challenge: Can you figure out how 
to perform the splitting functions on a Bird Base to yield the 
Grasshopper’s base? (And then, shape the resulting flaps into 
the folded model.)

By using point-splitting, you can add extra appendages 
and features to models made from existing bases. However, 
there is a cost in layers, and a limit on size. As we have seen, 
even the theoretically optimum two-point split results in flaps 
less than half the size of the flap you started with. Point-
splitting cannot double a flap at the same size, or increase 
the length of a flap, or add more points to the end of the flap 

Figure 5.28. 
Crease pattern, base, and folded model of the Walrus.

© 2012 by Taylor & Francis Group, LLC



116 Origami Design Secrets, Second Edition

without shortening it. For that, one must find a way to add 
paper to the model while preserving its basic structure. We’ll 
find out how in the next chapter.

Figure 5.29. 
Crease pattern, base, and folded model of the Grasshopper.
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Folding Instructions

Pteranodon

Goatfish
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Pteranodon

1. Begin with a square,
colored side up. Fold and
unfold along the diagonals.
Turn the paper over.

2. Fold the paper in half
from edge to edge and
unfold. Repeat the other
direction.

3. Bring all four corners
together at the bottom,
forming a Preliminary
Fold.

© 2012 by Taylor & Francis Group, LLC



119Chapter 5: Splitting PointsFolding Instructions: Pteranodon

4. Petal-fold the front and
back flaps to form a Bird
Base.

5. Fold one flap
down in front and
one behind.

6. Fold the upper left edge
down to the horizontal
crease and unfold. Repeat
with the upper right edge.

7. Fold the top point down
along a crease that passed
through the crease
intersection along the
center line.

8. Fold up the tip of the
corner along a crease
aligned with the existing
horizontal crease.

9. Unfold to step 6. 10. Open-sink the
point in and out on the
existing creases.

11. Spread-sink the
two top near
corners. Repeat
behind.

12. Fold one long
flap up in front and
one up behind.

13. Fold the bottom left flap
up to lie along the horizontal
crease; crease lightly and
unfold.

14. Fold the flap up again so that the
crease hits the edge at the same point,
but now the left edges are aligned.
Crease firmly and unfold.
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15. Again, fold the flap up with
the crease hitting the left edge
in the same place, but now the
right edges are aligned. Crease
firmly and unfold.

16. Crimp using the
existing creases.

17. Pull out the loose
paper completely on
both the near and far
sides of the flap.

18. The raw edges should be
perfectly horizontal; if they
aren’t, adjust the crimp and
flatten. Then reverse-fold the
white flap to the left.

19. Squash-fold the
flap over to the right.

20. Fold the corner
over to the left.

21. Fold a rabbit ear.

22. Bring one layer in
front, thus hiding the
tip of the rabbit ear.

23. Fold one flap
down.

24. Repeat steps
13–22 on the right.

13–22
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25. Fold one layer to
the left.

26. Fold one flap
down.

27. Open the right side
of the model, which
causes the hidden edge
to squash downward.

30. Reverse-fold the corner.
Note that the mountain fold
aligns with a valley crease
on the layer beneath. Repeat
behind.

31. Mountain-fold
an edge behind.
Repeat behind.

32. Fold the right edge
over and over, dividing
the angle in thirds.
Repeat behind.

33. Narrow the flap by
forming a rabbit ear.
Repeat behind.

29. Crimp the left
side upward.

28. Close the model
back up.

34. Carefully reverse-fold
through the thick layers.
The top edge of the reverse
fold hits the marked spot.

35. Outside-reverse-
fold the layers.
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36. Mountain-fold the
rear flap to the front
as far as possible.

37. Fold the top edge
down.

38. Bring the near
wing in front of the
head.

39. Fold the wing
down and unfold.
Repeat behind.

40. Fold the wing tip
down. Repeat behind.

41. Fold the wing tip
back up so that the left
edge is aligned with
the layer beneath.
Repeat behind.

42. Unfold to step 40. 43. Crimp the wing
on the existing
creases. Repeat
behind.

44. Pull out some
loose paper from the
leading edge of the
wing. Repeat behind.

45. Tuck the small
corner under a raw
edge. Repeat behind.

46. Shape the head
and legs.

47. Finished Pteranodon.
Hold the neck and feet
and pull to make him flap
his wings.
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Goatfish

1. Begin with a square, colored
side up. Fold and unfold along the
diagonals. Turn the paper over.

2. Fold the paper in half from
edge to edge and unfold.
Repeat the other direction.

3. Bring all four corners
together at the bottom,
forming a Preliminary Fold.
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4. Petal-fold the front
and back flaps to form
a Bird Base.

5. Fold one flap
down in front
and one behind.

6. Fold the upper left
edge down to the
horizontal crease and
unfold. Repeat with
the upper right edge.

7. Fold one flap up to
the right so that the
right edge is aligned
with the layer
underneath.

8. Pull out some
loose paper as far
as possible.

9. Squash-fold the corner,
swinging the white flap
over to the left along a
vertical valley fold.

10. Pull out some loose
paper on the right as in
step 8.

11. Open out
the flap and
flatten.

12. Mountain-fold the
edge underneath.

13. Using the existing
creases, bring the two
bottom corners together
while buckling the
middle upward.

14. Reverse-fold the
edge inside.

15. Repeat steps
7–14 behind.

7–14
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16. Squash-fold one
flap.

17. Open out the raw
edges and fold the flap
down and to the right.

18. Mountain-fold the
corner underneath.

19. Fold the flap in half,
forming a small reverse
fold as you close it.

20. Reverse-fold the
corner.

23. Reverse-fold the
pair of points to the left,
so that the folded edge
lines up with the crease
you made in step 21.

24. Crimp the bottom
right point upward so
that its bottom edge is
horizontal.

25. Fold and unfold. 26. Unfold to step 24. 27. Fold and unfold along
a crease perpendicular to
the right edge.

28. Crimp the point
using the existing
creases.

29. Pull out the loose
paper completely.

30. Fold and unfold. 31. Outside-reverse-
fold the flap, then put it
behind the left flap.

21. Fold the two points up
and out to the sides, one to
the left, one to the right.
Repeat behind.

22. Fold and unfold
the split point.
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32. Crimp the left point upward;
note that the lower creases are
perpendicular to the edge.

33. Fold the flap up
along the folded edge.

34. Fold the flap back to
the left along a crease
perpendicular to the edge.

35. Unfold to step 33.

36. Reverse-fold four
corners upward.

37. Crimp the left flap upward on the
existing creases; at the same time, push
down some paper from the underside of
the flap to the right of the crimp.

38. Mountain-fold the
inside flap as far down as
possible.

40. Unwrap a single layer. 41. Reverse-fold the corner.39. Reverse-fold the corner.

42. Reverse-fold two
corners to align with the
folded edges.

43. Reverse-fold two
corners to align with the
folded edges.

44. Reverse-fold and squash the near
flap up and over to the left, forming
a long gusset in the layer behind the
flap. Repeat behind.
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45. Reverse-fold one edge.
Do not repeat behind.

46. Squash-fold the
flap upward.

47. Turn the paper over.

48. Tuck the edge
into the pocket.

49. Turn the paper
back over.

50. Fold the thick
edge upward.

51. Fold one flap down
in front and behind.

52. Fold and unfold, making a
light pinch through the diagonal
crease.

53. Fold the top point down
along a horizontal crease that
runs through the pinch you just
made.

54. Reverse-fold the edge, tucking
the excess paper underneath using a
vertical mountain fold.

55. Fold the flap up. 56. Unfold to step 53. 57. Refold, making the creases
on the front side match the
creases on the far side.
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61. Outside reverse-fold
the right side.

62. Pull out the corner.
Repeat behind.

63. Crimp the point
downward. Repeat behind.

64. Crimp the corner and twist
it upward to the left. Repeat
behind.

65. Crimp the right
side underneath.

66. Reverse-fold two inside
corners created by the crimp.

67. Reverse-fold the middle
point (of three) upward.

68. Mountain-fold the bottom
edges of the jaw and belly.

69. Finished Goatfish.

58. Mountain-fold the edges
inside in front and behind.

59. Mountain-fold one of the
two paired flaps inside.

60. Refold the crimp
you undid in step 26.
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6
he initial stages of origami design are usually 
modifications of existing designs. This modi-
fication can take two forms. The simplest is 
that which every folder does consciously or un-
consciously: simply altering proportions of the  

folding sequence while still following the designer’s instruc-
tions. You could change the proportions of particular creases, 
change the crease firmness from sharp to smooth (or vice 
versa), add or remove creases, straighten what is curved and 
curl what is straight. It is very easy to change a model in the 
final shaping folds. In fact, it is very difficult to make a precise 
replica of someone else’s fold, particularly if the design is fairly  
complex. And precise duplication is rarely desirable; an artist 
must develop his or her own vision of the folded model even 
when following someone else’s design, and therefore must not 
be afraid to deviate from the original folding sequence.

Changing proportions of an existing model, however, is very 
limiting to the origami designer. You can only work with the 
existing structure; you have the same number of flaps, the same 
lengths, the same relative positions. Techniques such as point-
splitting can turn one flap into two, or three, or more, but only, 
as we have seen, with a substantial penalty in flap length.

Quite often, what is needed—or at least desired—in a 
derivative origami design is not just a rearrangement of the 
existing paper, but actually a bit more paper somewhere: a 
longer leg, an extra set of appendages, another petal on the 
flower, another horn on the beetle. At such times, you might 
have a nearly complete design (either your own or someone 
else’s) to which you would like to add a bit more structure, but 
there’s no more paper from which to make the new bits. At such 
times—particularly if you’ve already put a great deal of work 

Grafting
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into the model—the prospect of starting over from scratch can 
be downright depressing.

Now, if it were allowed, one might be tempted to simply 
glue on a bit of extra paper, just as in the previous chapter the 
obvious solution to splitting a point was to cut it in two. But 
just as we found ways to achieve the same result as cutting 
while preserving one-piece, no-cut folding, it turns out that it 
is quite often possible to achieve the same result as gluing—to 
add a bit of paper to a particular location without redesigning 
the entire model—while preserving the square that we started 
from. This process is remarkably versatile: It can transform a 
run-of-the-mill design into something special or even extraordi-
nary and has been utilized by many of the world’s top origami 
designers. I call it grafting.

6.1. Border Grafts
For a concrete example of grafting, let’s consider our old 
standby, the Bird Base, which lends itself very well to perching 
birds. The Bird Base has four long flaps, which can be used for 
a head, tail, and two legs. The simplest bird I know of that can 
be folded from the Bird Base is a traditional design, the Crow: 
Narrow two flaps to make legs, then reverse-fold one flap and 
crimp the two narrowed flaps to create a head, legs, and feet, 
as shown in Figure 6.1.

Now, as origami designers have done for decades, you 
can use the Bird Base to realize a wide variety of perching 
birds, so long as you don’t need open wings, by using this basic  
design. By adding more folds—extra reverse folds, crimps, 
rounding folds—it’s possible to make many distinct and recog-
nizable species with suggestions of wings, feathers, and even 
eyes and other features.

But one thing that most of these origami birds have in 
common is that the foot is represented by a single toe, and 
real birds, of course, have four toes. This simplification is not 
intrinsically bad; all origami is somewhat abstract, and in the 
overall design of a model, there should be a balance in the level 
of abstraction. A simple, clean-lined model can succeed perfectly 
well with simplified feet.

It must be said, however, that a distinctive feature of many 
birds is their splayed feet, whether standing on the ground or 
grasping a branch or twig. There are occasions when it would 
be quite desirable to have full, four-toed feet on a perching 
bird design.

One approach, of course, would simply be to turn the 
foot flap into four flaps using the point-splitting techniques of 
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the previous chapter. This change comes at a cost, of course: 
In order to obtain four flaps at the tip, the main flap gets  
substantially consumed. It is possible to obtain four toes  
using the sequence shown in Figure 6.2 (a radial four-point 
split), but the legs that are left are short, fairly wide, and suf-
ficiently thick so that narrowing them to approximate a bird’s 
stick-like legs is rather difficult.

For a perching bird, it would be desirable to keep the 
legs long but to replace the single point at the tip of each leg 
with four points without reducing the length of the leg. That 
requires a net addition of paper.

If it weren’t for those one-piece rules, we could simply 
glue on an extra bit of paper at the feet as shown in Figure 6.3 
as a revised ending to the folding sequence of Figure 6.1. We 
could make a pair of four-toed feet from two tiny bird bases, 
glue them onto the larger bird, and presto! We’re done.

But from a single sheet, what can we do? Well, we could 
see if it’s possible to somehow obtain the functionality of three 

Figure 6.1. 
Folding instructions for a simple Crow.

5. Mountain-fold the
model in half.

6. Reverse-fold the top point
to form a head. Crimp the feet.

7. Finished Crow.

1. Begin with a Bird
Base. Reverse-fold the
bottom flaps out to the
sides.

2. Narrow the flaps with
mountain folds.

3. Fold one flap down. 4. Fold the next flap down.
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Figure 6.2. 
Folding sequence for splitting one point into four smaller points.

1. Begin with a flap
from a Bird Base. Fold
the flap up and down.

2. Fold the edge to the
existing crease.

3. Mountain-fold the
flap underneath on the
existing crease.

4. Fold the group of
layers up on a crease
that lines up with the
hidden edge.

5. Unfold to step 2. 6. Crimp the point
upward, using the
existing creases.

7. Pull out some loose
paper on both sides.

8. Fold so that the raw
edges are aligned, and
unfold.

9. Crimp the point
downward.

10. Outside reverse-
fold.

11. Reverse-fold the
edge.

12. Reverse-fold three
edges.

13. Reverse-fold three
edges again.

14. Finished split point.
There are now four equal
points at the end of the flap.
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squares—two small and one big—from a single sheet. And 
since the feet folded from the small squares are attached to 
the tips of the leg flaps in the big square, it makes sense to try 
attaching the small squares to the corners of the big square 
that correspond to the leg flaps.

To do this, we’ll need to identify the relationship between 
the square (and its crease pattern) and the folded model. You 
can do this in practice by coloring flaps of the folded model 
and then unfolding it to a crease pattern and noting where 
the colored bits fall. With practice, however, you’ll be able to 
keep track of such points as you unfold the model without 
coloring.

Figure 6.4 shows the unfolded Crow—which we will take 
to represent a generic bird—and identifies which parts of the 
square make up which parts of the bird.

Figure 6.3. 
Adding toes to a Bird Base by gluing.

7. Attach the Bird Bases to the two
flaps.

8. Now the Bird Base has four toes
on each foot.

5. Squash-fold the feet
downward.

6. Fold two tiny Bird Bases from squares whose
side is twice the length of the squashed point.
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The two side corners become the legs. We would thus add 
the small squares that form Bird Bases to the corners of the 
larger square as in Figure 6.5.

Now, if we had three squares actually joined at their  
corners, we could certainly fold a four-footed bird from this 
unusual shape. The practice of folding from corner-joined 
squares is not unknown in origami (a 1797 publication by  

Figure 6.4. 
Crease pattern, base, and folded model for the Crow.

Wing

Tail

Beak
Leg Leg

Wing

Tail

Beak

Leg
Leg

Tail

Leg

Beak

Leg
Wing

Tail

Leg

Beak

Leg

x

y

Wing
x

y

Tail

Beak

Leg Leg

Figure 6.5. 
Two squares attached to another square at their corners.
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Rokoan displayed numerous examples of joined cranes folded 
from paper cut in such a fashion) but we will attempt to fold 
our design from a single square. Thus, we need to obtain all 
three shapes as portions of a single square. The easiest way 
to turn the trio of squares back into a single square is to ex-
tend the sides of the smaller squares until they join, forming 
a larger square as shown in Figure 6.6.

Figure 6.6. 
The three squares embedded within a larger square.
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Now, we have embedded all three squares in a larger 
square, which can be used—we hope—to fold a bird with four-
toed feet. Does it work? Let’s try it out.

The folding sequence shown in Figure 6.7 gives a Bird 
Base with a small square at each of the corners. However, 
this square is attached to the larger Bird Base along its full 
diagonal. Is it possible to fold the small square into another 
Bird Base? Yes, but with a slightly modified sequence to ac-
commodate the fact that the small square is joined to the larger 
flap, which limits how it can be manipulated.

The resulting Bird Base can be used to make conventional 
bird feet, although it is desirable to narrow some of the flaps 
and redistribute their layers, as shown in the Songbird model 
at the end of the chapter.

What we have done here is to add some more paper to 
the square while keeping it square, by grafting on more paper, 
in this case, a border running all the way around the outside 
of the square. We call this a border graft. Grafting can be a 
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powerful technique for adding both large and small features 
to an origami model.

However, grafting carries with it a risk: inefficiency. All we 
really needed to add to this model were the two small squares 
in the corners. But now, we’ve added a wide border all the way 
around the square; most of this extra paper will go unused, 
adding to the thickness of the model without adding anything 
to the design.

Thus, there is a bit of an art to using grafting in design; 
while the graft may have been inspired by the desire to add 
a small bit of paper in one or two places, the challenge is to 

Figure 6.7. 
Folding sequence for a Bird Base with two small squares at opposite 
corners.

7. The small square at
the top is one of the
squares we added at the
corners.

6. Pleat the sides
downward and squash-
fold the top.

5. Pop the corner inside-
out so that it becomes
concave upward.

4. Unwrap the loose
paper from the top near
flap.

1. Begin with a square with the diagonals
creased. Mountain-fold a bit of the edge behind
all the way around.

2. Fold a Preliminary Fold. 3. Petal-fold to form a Bird Base.
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Figure 6.8. 
Folding sequence for making the smaller square into a Bird Base.

10. Petal-fold the top corner.9. Form a Preliminary Fold
with the near layers.

8. Continuing on (from
Figure 6.7). Mountain-fold
the flap behind with the
crease running from corner
to corner and unfold.

13. Pull the corner out
completely.

12. Fold the two points back
down.

11. Petal-fold the two points
together with the trapped
corner inside.

16. The finished four-
pointed Bird Base at the tip
of the larger Bird Base.

15. Use the existing creases
to collapse the corner into
a Bird Base.

14. Like this. The flap is
now a Bird-Base-creased
square, folded in half along
the diagonal.
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minimize wasted paper. Waste can be avoided—or at least 
reduced—by figuring out ways of using some of the otherwise 
nonessential added paper. For example, when we add feet by 
grafting a border all the way around the outside of a Bird Base, 
adding paper at two opposite corners of the square results in 
the addition of paper at the other two corners, which become 
the head and tail. We don’t need to add four toes to either the 
head or tail, obviously, but if we can put that additional paper 
to good use, the result is a further improved model and elimi-
nation of the waste. As it turns out, the paper at the head end 
can be used to make a double (i.e., open) beak, while the paper 
at the tail end can be used to make the tail longer, wider, or a 
bit of both. Furthermore, it’s also possible to use some of the 
border that runs between adjacent corners to make a more fully 
rounded body. Thus, the excess paper goes to good use: The 
layers can be evenly distributed through the model, and the 
result is a songbird considerably more lifelike than the original 
Bird Base bird from which we started. The crease pattern, base, 
and folded model are shown in Figure 6.9; you will find a full 
folding sequence at the end of the chapter.

Figure 6.9. 
Crease pattern, base, and folded model of the Songbird.

As an extra bonus, this configuration allows us to make 
the legs and breast with the opposite side of the paper showing, 
creating a nice two-toned effect.

A border graft need not run all the way around the square; 
if you only need to add paper to one end, you can simply add 
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paper to two sides, creating a new square at one corner. The 
risk, as with all grafted bases, is that the paper you’ve added 
to complete the square is essentially wasted unless you can 
find some other use for it.

As an example, some years ago a composite (multisheet) 
origami model had become quite popular by combining the 
head from a dragon by Kunihiko Kasahara (itself a three-
piece composite model) with the body, wings, legs, and tail 
of a simple one-sheet dragon by Robert Neale, as shown in  
Figure 6.10. The combination became known as the Kasahara-
Neale Dragon. Kasahara’s head was folded from a Bird Base, 
while Neale’s Dragon was folded from another, larger Bird 
Base, and the two would be joined with glue. The combination 
is a perfect opportunity to make the entire structure from a 
single sheet using grafting.

Figure 6.10. 
Assembly of two different-sized Bird Bases into the Kasahara-Neale 
Dragon.

Since the small square would be joined to a corner of 
the larger square, we can use the border grafting technique. 
However, as Figure 6.11 shows, we are adding a fair amount of 
paper just to get that one little square in the upper corner.

Fortunately, the extra paper becomes part of the two 
wing flaps, and so it can be used to give the Dragon somewhat 
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larger wings than the original Neale Dragon from which it is 
derived. In this way, efficiency is preserved, and the model 
benefits from a bit of serendipity. As with the Songbird, there 
is some further work to find a workable folding sequence. Put 

Figure 6.11. 
Position of the two squares 
within a larger square for a one-
piece dragon.

Figure 6.12. 
Crease pattern, base, and folded model of the KNL Dragon.
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it all together, and the result is a charming little dragon that 
stands on its own. I call the new model the Kasahara-Neale-
Lang Dragon—KNL Dragon, for short. You will find its folding 
sequence at the end of this chapter.

Figure 6.12 shows the crease pattern, base, and folded 
model of the KNL Dragon. You should be able to pick out the 
two Bird Bases as well as the boundary of the border graft.

6.2. Strip Grafting
Grafting does not always put the added paper around the 
outside of the model; if that’s all that there were to grafting, 
we would quickly exhaust the possibilities of the technique. 
But we can add grafts in the interior of the paper as well, by 
cutting patterns apart and reassembling them with our new 
additions—a far more powerful and versatile technique.

If, for example, we wished to add feet without adding 
excess paper at the head or tail, we could add the additional 
paper in a strip running across the middle of the square. 
Imagine, for example, cutting the Bird Base in half hori-
zontally and pulling the two ends apart. Then the two “foot” 
squares could be joined by a strip that cuts across the middle 
of the paper, and the result inserted into the gap, as shown 
in Figure 6.13.

Figure 6.13. 
Construction of a strip-grafted model. Two squares are joined by a 
strip inserted along a cut across the square.

But a problem arises; when the creases are connected 
across the strip, one of the four Bird Base points is no longer 
freely accessible. Fortunately, the fifth point in a Bird Base, 
which comes from the center of the square, can be pressed 
into service as the desired fourth point.

The result can be folded into many different types of birds, 
but because the extra layers in the legs are evenly distributed, 
I find this structure particularly suitable for a long-legged 
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wading bird, realization of which I shall leave as a challenge 
for the reader.

So, as these two models illustrate, one can create paper 
to add features by augmenting a square in one of two ways; 
you can add paper around the outside, or you can add a strip 
cutting across the model. Of course, in the second case, there’s 
no need to actually cut the square and paste in a strip. You 
simply design in the strip from the very beginning. How wide 
a strip? It depends on how much extra paper you need.

It’s also possible to add multiple strips. If, for example, you 
wanted a bird with four-toed feet and a split beak and more 
paper in the tail, then you could add two strips: one running 
side to side, one running up and down. Can you design and fold 
such a bird using two crossing strips?

A straightforward application of strip grafting arises if 
you wish to add toes to four limbs that are made from the four 
corners of the square. An example that is difficult to resist 
is a multitoed frog, and the logical model to start from is the 
traditional Japanese Frog, which is, of course, folded from the 
Frog Base. Now, as we saw in the previous chapter, you can 
make a multitoed frog by splitting the four leg flaps, but that 
approach unavoidably shortens the flaps. We can also use 
grafting to add toes to all four limbs of the traditional Frog to 
realize a model in which the toes are more prominent and the 
legs remain relatively long.

“Relatively” is the key concept here. Grafting, like point-
splitting, shortens the limb flaps. If the final size of the square 
is fixed, we need to shrink the pregraft base to allow room  
for the grafted paper. As the saying goes, there’s no such thing 

Figure 6.14. 
Crease pattern for a Bird Base 
with a strip graft. Note that 
the creases around the fourth 
point of the tiny Bird Base are 
no longer used, and the point is 
not free.
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as a free flap. But there is a difference between the size reduc-
tion arising from point-splitting and that from grafting; in 
point-splitting, the split flaps get reduced in size, but the rest 
of the model (the body, in the case of the Frog) remains the 
same size. In grafting, on the other hand, the entire model is 
shrunk in proportion to accommodate the graft, so the basic 
proportions of the model are unaltered from their pregrafted 
values.

There are two ways we’ve seen to augment a square at 
its corners: We could add a border graft—a strip running all 
the way around the outside—or we could add two strips cross-
ing in the middle. Both could be used (and I encourage you to 
try both yourself), but the crossing-strips configuration offers 
an extra bonus of creating some extra paper in the middle of 
the paper, as shown in Figure 6.15. Why is that a bonus? In 
the traditional Frog, the middle of the paper winds up at the 
head. It’s always nice to have some extra paper at the head 
of an animal where it can be used for facial features—mouth, 
tongue, teeth—or, in the case of a tree frog, prominent eyes. 
We may not have started designing a frog with eyes, but if 
the opportunity presents itself, we’ll take it.

Figure 6.15. 
Adding four squares to a Frog Base by cutting along the diagonals.

Now, in designing a strip-grafted model, there is a deci-
sion to be made: How large should the small squares be, or 
equivalently, how wide should the strip be? You can, of course, 
simply use trial and error: Try wider and narrower strips 
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and see if the feet come out too big or too small. But there is 
another factor that should be taken into account. To keep the 
lines of the model clean, it is desirable to make the edges line 
up as much as possible, which means that features we add by 
grafting would ideally line up with features that are already 
there in the pregrafted base. In the case of the Frog, if we make 
the added strip the same width as the flaps of the Frog Base, 
the new layers will be exactly half the width of the Frog Base 
flaps. Narrowing the flaps by folding them in half will result 
in all the edges lining up, giving a neater appearance. Thus, 
the resulting crease pattern from which we start would be 
something like Figure 6.16. 

Figure 6.16. 
An elegant proportion arises if 
the dimensions of the smaller 
squares are matched to the di-
mensions of the Frog Base.

There are still two problems: How do we find these creases, 
and how do we actually collapse the pattern (i.e., what is the 
folding sequence)? The coordinates of the reference points can 
be numerically calculated from their geometric relationship; 
you can measure and plot their location. (It is also possible 
to devise folding sequences for any reference point, but that 
problem, which is quite rich in and of itself, is beyond the scope 
of this book.)

For finding the folding sequence, a good way to start is to 
make the paper resemble a base that you already know how 
to fold—in this case, the traditional Frog Base. It often works 
when a base has been augmented by strips simply to fold the 
strips so that the crease pattern looks like the ungrafted base, 
then proceed with the square fold as if it were all one sheet of 
paper as shown in Figure 6.17.
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This puts all the creases in the right place, but you will of-
ten find that some of the layers get trapped; this happens with 
the thick layers formed by the crossing pleats in the center of 
the paper. In such cases, you will probably have to partially 
unfold the model to disentangle the layers (a process dubbed 
decreeping by origami artist Jeremy Shafer). Decreeping ac-
complishes two things: It makes all of the layers accessible so 
that they can be turned into other features, and by reducing or 

Figure 6.17. 
Initial folding sequence to construct the augmented Frog Base.

1. Pleat the paper vertically. 2. Pleat the paper horizontally. 3. Form a Preliminary
Fold and continue folding
the Frog Base.

Figure 6.18. 
Crease pattern, base, and folded model of the Tree Frog.
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eliminating folds composed of many layers, it allows the layers 
to stack neatly, giving a cleaner folded model.

When you are designing, it’s both reasonable and com-
mon to fold many layers together in order to put creases into 
the right place. Once you know where the creases are, you 
can search for alternate folding sequences that permit a more 
sequential assembly; such a sequence for the Tree Frog of 
Figure 6.18 is shown at the end of the chapter.

6.3. More Complicated Grafts
Thus far we’ve used grafting to add paper to one or more corners 
of a square. We can do this in two ways: by adding a border graft 
(a strip of paper running all or partway around the square), 
or by adding a strip graft (a strip of paper cutting across the 
crease pattern). The strip graft necessitates that we cut the 
crease pattern into two or more pieces to insert the strip. It may 
seem vaguely disquieting to cut up the origami square, but you 
should get used to the idea: more complicated cuts, instigated 
by more complicated grafts, are shortly to come.

In any event, all we’ve looked at so far is adding features 
to the corners of a square, but since there are only four corners 
on a square, it’s pretty easy to enumerate all possible ways of 
using border and strip grafts to augment corners. However, 
it’s also possible to use grafting to add paper in the middle of 
an edge.

Why might we want to do this? Well, for one thing, not all 
models derive their flaps from the corners of the paper. One 
of the most straightforward applications of grafting is to add 
extra paper to the end of a flap, as we’ve done for toes, for ex-
ample. If the tip of the flap in question comes from the edge of 
the paper, rather than the middle, then we should add paper 
in the middle of the edge.

There is much more variety in adding paper to a spot 
along the edge of the square, since there are an infinite num-
ber of locations along the square where we might perform our 
surgery. And it will be surgery of the strip-grafting sort; as we 
will see, border grafts are far more limiting than strip grafts 
when it comes to adding paper along edges of preexisting crease 
patterns.

As a concrete example and to have something to work with, 
let’s take the simple lizard shown in Figure 6.19 (and whose 
folding sequence is given at the end of the chapter). This model 
fits together quite neatly; it’s questionable whether one should 
even try to add feet. What you give up in aesthetics may very 
well not be compensated by what one gains in adding paper to 

© 2012 by Taylor & Francis Group, LLC



147Chapter 6: Grafting

the appendages. But for sake of illustration, let’s assume that 
we wanted to add some paper to the four legs to obtain feet.

Figure 6.19. 
Crease pattern, base, and folded model for the lizard.

Now, before we dive into slicing and dicing this or any 
crease pattern, let me point out that the simpler the crease 
pattern is, the easier it is to visualize the structure of the 
resulting base. It is therefore worthwhile to eliminate as 
many unnecessary creases as possible from the pattern you 
start with. The pattern in Figure 6.19 (as is the case with all 
crease patterns I show) doesn’t show every single crease in the 
model, which would be far too cluttered, but only the creases 
used to fold the base (which, in the case of the lizard, is step 
36 of the folding sequence).

The base is obviously not an entire lizard, but it has all 
of the essential features: the head, tail, body, and four legs. 
Even so, the crease pattern is still quite busy with creases, 
which is because by step 36, we have made all the points fairly 
narrow and introduced a lot of creases in the process.

If we look even earlier in the folding sequence, we see 
another version of the base that still captures all of the es-
sential elements (it has the same number and length of flaps 
as the skinny version) but has a much simpler crease pattern, 
shown in Figure 6.20.

One other thing I’ve done in simplifying the crease pat-
tern is to ignore those parts of the square that aren’t essential 
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to the base, by coloring them in and not drawing any creases in 
them. In this case, three of the four corners go unused.

What do we mean by “not essential to the base”? A simple 
definition of nonessential would be that you can cut away the 
paper without losing or shortening any flaps. In the lizard, 
the pair of scalene triangles at upper left and lower right in 
Figure 6.20 clearly fits this definition (which you can verify by 
direct experimentation: Fold the base, cut off the corners, and 
refold it). The upper right corner is questionable; it creates the 
white underbelly of the lizard, and the raw corner can be used 
to make a lower jaw and/or tongue for the lizard (try it), but if 
we take the major features of the base to be head, body, legs, 
and tail, we can assuredly cut away the corner and still obtain 
these features in the same sizes and locations.

Of course, such nonessential corners, even if they create 
no new flaps, still add to the thickness of the existing flaps. 
This can be either a feature or a bug in the design, depending 
on whether the extra paper adds necessary stiffness to the 
flap (feature) or causes the flap to split, splay apart, or unfold 
(bug).

In the crease pattern, I’ve also added labels that show which 
parts of the crease form which features of the base. We use these 
to define where we wish to add extra paper to create the toes.

Figure 6.20. 
Crease pattern and folded example of the simplified lizard base.
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hind legs

tail
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Now, as we’ve seen, there are several different ways to 
add toes to this lizard. We could split the leg points, albeit 
at a cost in length. We could do it with a border graft. And 
we could do it with a strip graft, in more than one way, as 
it turns out. But let’s first look at trying a border graft, not 
because it works best, but because it doesn’t work very well at 
all. In origami design, understanding why a design technique 
doesn’t work can sometimes be more valuable than folding 
one that works.

Proceeding as with the bird’s feet of the previous section, 
let’s try adding a small Bird Base to the tip of each of the four 
legs as shown in Figure 6.21, which, reasoning by analogy, 
should give us four toes on each foot.

Figure 6.21. 
Left: adding four small bird bases to the feet of the lizard base. Right: 
the shape embedded in a larger square.

The first thing that stands out from this construction is 
that we’ve added a whopping great quantity of nonessential 
paper to the pattern (in addition to the nonessential paper that 
was already there at three of the four corners). Basically, all of 
the colored region on the right in Figure 6.21 is nonessential. 
The second thing of importance—which doesn’t stand out, 
but can be ascertained from examination of the pattern—is 
that it turns out to be impossible to add creases to the colored 
region in any way that allows the four “toes” (the tips of the 
bird base) to come together.
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How, you may ask, can one be so sure of impossibility? By 
a small thought experiment: an imaginary manipulation of the 
base, as if such a base actually existed. If we had such a base 
(the same as the lizard base, but with all four toes together at 
the tip of the feet) then we would be able to manipulate the 
flaps in the same way as the flaps of the original lizard base. 
In particular, we should be able to manipulate the flaps into 
the same arrangement as step 19 of the folding sequence for 
the Lizard. This arrangement is shown in Figure 6.22.

Figure 6.22. 
Left: a configuration of the flaps of the lizard base. 
Right: a possible partial crease pattern.
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Now, the image on the left in Figure 6.22 shows one pos-
sible arrangement of the base, with one of the triangles in the 
crease pattern indicated by its corners A, B, and C. The base 
might not look exactly like this, of course; the extra paper we’ve 
added might create more layers that cover up or conceal the 
original lizard base flaps, but somewhere inside the extended 
base, we’d have the original lizard base. And in this folded 
configuration, triangle ABC, which is part of the original base, 
is flat.

Let’s ask a question: How far is it from point C (the tail) 
to point A (tip of the leg/one of the toes)? The answer is evident 
from the figure; since triangle ABC is flat in both the crease 
pattern and the folded base, the distance is equal to the length 
of line segment AC. Call this distance x.
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If we’ve assumed that all the hind-leg toes are together 
at point A in the folded base, then the toe marked A* in the 
crease pattern must be one of them. So it, too, must be sepa-
rated from the tail point C by the same distance x—in the 
folded form.

Now let’s look back at the crease pattern. It’s clear that 
point A* is somewhat closer to point C in the crease pattern 
than point A. So in the crease pattern, the distance from A* to 
C is less than x. In the folded form, it’s equal to x. So whatever 
the crease pattern in the colored region is, it has to increase 
the separation between points A* and C.

But this is impossible. Short of stretching or cutting, there 
is no way to fold a sheet of paper that increases the distance 
between two points. Folding can only reduce this distance. The 
goal is impossible to attain; there is no set of creases added to 
the border graft that allows all four bird base points to come 
together at the tip of the leg flaps.

So, while border grafts allow a Bird Base to be added to 
one or more corners of a square, they don’t allow one to be 
added to the edge in the same way.

More importantly, we have touched on a very deep con-
cept in origami design: the relationship between distances in 
the folded and unfolded forms. As we saw in point-splitting, 
where it was key to the design of the ideal split, examining 
distances in the folded base and on the unfolded pattern can 
show what is possible and impossible and provides guidance 
for the location of important creases. And as we will see in 
later chapters, this relationship forms the underpinning of a 
full mathematical theory of efficient origami design.

In the example described above, the point marked A* was 
the one that caused the problem. What if we only wanted two 
toes? Then could we use a border graft that incorporated the 
two-flap Fish Base? The embedded crease pattern is shown 
in Figure 6.23.

This pattern does not incorporate any contradictory as-
sumptions, unlike the previous example, and if you draw it 
out, you will find that you can add creases to realize a lizard 
base with two flaps at the tip of each foot.

But as noted earlier, the border graft is fairly inefficient 
anyhow, and we have one other possible way of performing 
a graft: the strip graft. We can graft a strip into a model by 
cutting it apart and inserting the strip(s) between the cut 
edges.

In the strip graft that we used in the Tree Frog, we cut 
each flap down the middle—more specifically, along an obvious 
line of symmetry. Where should we cut this pattern? The lizard 
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flaps don’t have quite the same left-right symmetry, but in the 
essential crease pattern (the central light pentagon), each flap 
has the same general structure as the flap of the Tree Frog, as 
shown in Figure 6.24.

Each flap is composed of four facets separated by al-
ternating mountain and valley folds. In the Tree Frog, we 
split each flap along its central mountain fold. In our lizard  

Figure 6.23. 
Embedded crease pattern for 
a border graft using four Fish 
Base points.

Figure 6.24. 
Left: crease pattern for the lizard base. 
Right: crease pattern for the Frog Base. Observe that the flap in each 
case is composed of four wedges.
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example, we can do the same. If we split a flap along a crease, 
then there is a very simple construction of creases to impose on 
the inserted strip that is easily generalizable to any number 
of flaps, which is shown in Figure 6.25. Each strip is divided 
into parallel pleats, one for each gap between toes. The ends 
of the pleats are then reverse-folded to separate the individual 
toes.

Figure 6.25. 
Cut and insert a strip of paper to split the flap into two or three 
smaller pieces.

1. Cut the flap along its
central mountain fold.

2. Insert the strip as a rectangle
whose short side connects the
tips of the two halves.

3. Crease pattern for two
points.

4. Crease pattern for three
points.

So, all we need to do is cut along the mountain folds in 
each flap and insert rectangular strips, which will be subdi-
vided into as many points as we want toes.

Figure 6.26. 
Left: the lizard base, cut along mountain folds. 
Right: with strips inserted.
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The images in Figure 6.26 illustrate the cut-and-insert 
process. However, one problem arises: It’s not possible to get 
all of the strips to line up. As you see in the right image, only 
three out of the four rectangular strips can be aligned to the 
pieces of the crease pattern.

This problem is fixable, however, by making one more 
cut and adding a strip down the middle of the tail. We don’t 
need to divide the tail (forked tails being relatively rare among  
lizards), but in this case, the strip is necessary to make the 
entire graft work out.

Figure 6.27. 
Left: the dissected pattern with an additional strip down the tail. 
Right: starting to draw in the strip creases.

?

In the image on the right in Figure 6.27, I’ve added creases 
that create only two toes for simplicity, but you could have 
easily used strip patterns for three, four, or five toes if you 
so desired. (And since we don’t need to split the tail, I have 
left it as a pleat.) An open question is: What happens in the 
very center of the pattern when all the creases come together?  
Obviously, all of the pleats that we’re making from the strips 
have to terminate at each other somehow. In this case, the 
easiest thing to do is to cut out the crease pattern, make the 
folds that we know the location of, and then extend them  
toward the center, forcing the layers to lie flat as you go. The 
result is shown in Figure 6.28.

Finally, to get back to a square starting shape, we em-
bed this unusual polygon into a square, which results in the  
pattern on the right in Figure 6.28. I will leave the folding of 
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Figure 6.28. 
Left: crease pattern with the strip creases extended to the center. 
Right: resulting pattern, embedded within a square.

this pattern into a toed base as an exercise for you. One more 
exercise you might enjoy is working out how the strip crease 
patterns for larger numbers of points meet where they come 
together.

As we found with the Tree Frog, the place where the 
pleats come together creates several small middle flaps; these 
could easily be turned into eyes or other facial features. In 
fact, the middle flaps don’t have to be just a byproduct; you 
can create middle flaps intentionally by adding strip grafts 
to a crease pattern.

And this isn’t the only way to add strip grafts. A weakness 
in this crease pattern is that while all of the points at the end 
of the forelegs lie on the raw edge of the square, some of the 
points on the hind legs are middle flaps—they come from the 
interior of the paper, which means they are twice as thick as the 
others. If we use a strip graft along an edge to get a collection 
of points, the strip must be perpendicular to the edge (as it is 
in the forelegs) to keep all the points on the edge.

Well, there’s nothing that says we have to cut along ex-
isting creases to insert a strip graft. It’s perfectly acceptable 
to cut across creases, form the pleats of the strip creases, 
and then fold the original model, as illustrated in the crease  
pattern in Figure 6.29.

But this is more wasteful than it needs to be. A pleated 
strip, once started, has to keep propagating in the same  
direction until it hits something else; you can’t change the 
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direction of an isolated pleat. Pleats can certainly cross without 
changing direction, as is shown in Figure 6.29. But when two 
pleats collide, that’s an opportunity for them to coalesce into 
a single pleat running in a different direction, which reduces 
the total amount of added paper. Thus, we can create a much 

Figure 6.29. 
Left: cut lines for strip grafts perpendicular to the edge at each foot. 
Right: the embedded pattern, with partial strip creases.

Figure 6.30. 
Left: cut lines for a simplified strip graft. 
Right: grafts inserted.
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simpler set of strip grafts by propagating pleats inward from 
the edges of the square and noting that when they meet, 
we can send off a single new pleat that connects both pleat 
intersections. The resulting pattern, which is much more  
efficient with paper, is illustrated in Figure 6.30.

I should point out that the crease lines in the original 
base actually propagate into the pleats; I have left those out of 
Figure 6.30 in the interest of clarity. Again, I would encourage 
you to draw up this pattern and fold it into a lizard and/or to 
extend the pattern to larger numbers of toes.

6.4. More Applications of Grafts
One of the more enjoyable uses of border and strip grafts is to 
breathe new life into an old model. There is a shrimp design 
in the traditional Japanese repertoire, folded from a Bird 
Base, that is elegant but spare. Simply adding a border graft 
on two sides allows one to add the larger tail and split claws 
that make a respectable crawfish, as shown in Figure 6.31. I 
encourage you to fold it and try it out yourself. The structure 
is simple enough that you should be able to make it from the 
crease pattern alone. The folded model shown in Figure 6.31 
is still quite minimal; by narrowing the claws and adding 
further shaping folds, you should be able to produce quite a 
realistic model.

Figure 6.31. 
Crease pattern, base, and folded model of the Crawfish.
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Strip grafts can get fairly complicated and can actually 
comprise most of the paper in the model. The crease pattern 
in Figure 6.32 shows the base for a treehopper, a type of  
insect; this strip graft is used to create three points from one 
flap at each end (note the resemblance of the crease pattern to 
that of an ideal split). I have highlighted the strip graft in the  
crease pattern. If you cut out the strip and butt the two halves 
of the remainder together, you will observe the underlying base: 
a simple modification of the stretched Bird Base.

Figure 6.32. 
Crease pattern, base, and folded model of the Treehopper.

Figure 6.33 incorporates two strip grafts into a shape  
otherwise composed of half of a blintzed Waterbomb Base and 
half of a blintzed Frog Base. The transformation from base 
to folded model is more complex than most, but you should 
have no trouble in going from the crease pattern to the base. 
The extra paper in the split gets used to form the split in the 
wings, the pronotum (the triangle in the middle of the back), 
and both the pair of horns on the thorax and four horns on the 
head (yes, they really look like that. These beetles are popular 
as pets in Japan).

Grafts can get rather complicated, but their apparent 
complexity may mask an underlying simplicity. The Dancing 
Crane shown in Figure 6.34 is mostly graft, but in fact, it is 
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Figure 6.33. 
Crease pattern, base, and folded model of the Japanese Horned 
Beetle.

Figure 6.34. 
Crease pattern, base, and folded model of the Dancing Crane.
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nothing more than a Preliminary Fold with crossed grafts for 
the wing feathers and toes; the excess paper in the middle cre-
ated by the crossing of the two grafts is then enough to realize 
a long neck and head.

Now if you have worked your way through this chapter 
so far, you may quite likely feel that the concept of toes has 
been thoroughly pummeled into submission. And it is true, 
there is only a finite number of designs that can benefit from 
the addition of clusters of small points to preexisting flaps. 
Toes, claws, hands, feathers, and horns all have a place, but 
leave the great majority of origami subject material untouched. 
But by working through these specific examples, you’ve now 
seen the basic concepts behind the much larger world of grafted 
bases.

Cutting and gluing is not generally used in origami, but 
grafting effectively allows one to achieve the same results as  
cutting and gluing in an origami-acceptable way. But it does 
more: To make use of grafting, one needs to start looking at 
crease patterns and pieces of crease patterns as distinct enti-
ties that bring a particular function to the origami model: a 
flap, a set of flaps, an open space. By cutting and assembling 
pieces of existing bases into new bases, you can break out of 
the rigid hierarchy of the traditional bases and realize entirely 
new custom bases; in addition, you can selectively add patterns 
and textures to all or part of a model. We will learn techniques 
for both of these in the next section.
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Folding Instructions

Songbird 1

KNL Dragon

Lizard

Tree Frog

Dancing Crane
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Songbird 1

1. Begin with a square, colored side
up. Fold and unfold along the
diagonals, then turn the paper over.

2. Fold and unfold in half vertically
and horizontally.

3. Fold the sides in to the middle and
make pinches along the top and
bottom edges; unfold.
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4. Fold the left edge along a fold
connecting the top corner with the
bottom pinch mark; make a pinch
where the fold crosses the diagonal
and unfold. Repeat on the right.

5. Repeat step 4, using the bottom
corners and top pinch marks.

6. Valley-fold two diagonally opposite
corners to the crease intersections in
front; mountain-fold the other two
corners to the crease intersections
behind.

7. Mountain-fold the edges
behind all the way around.

8. Form a Preliminary Fold. Then
rotate 1/8 turn clockwise to put the
four corners at the bottom.

1/8

9. Petal-fold both front and
rear to form a Bird Base.

10. Release the
loose layers of
paper on both the
front and rear flaps.

11. Release some more
paper from the interior
and spread the edges as
far apart as possible. Do
not repeat behind.

12. Turn the
model over.

13. Release some paper
from the interior and
swing all the excess
over to the left.

14. Squash-
fold the flap
symmetrically.
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15. Petal-fold the
tip of the flap.

16. Fold the
flap down.

17. Turn the model
over from side to side.

18. Fold the two
points upward and
flatten firmly.

19. Reverse-fold
two points out to
the sides.

20. Wrap two layers from
inside to outside on each
leg.

21. Wrap two layers from
inside to outside again on
each leg.

22. Pull the white corners
as far out to the sides as
possible.

23. Open each leg,
spreading the layers
symmetrically.

24. Steps 25–46 will
focus on the left leg.
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25. Turn the paper over
and rotate so that axis of
the leg is up-and-down.

26. Squash-fold the flap
symmetrically.

27. Mountain-fold the top
half of the small square
behind and unfold.

28. Fold a tiny
Preliminary Fold from
the square.

29. Petal-fold the near
point.

30. Petal-fold the remaining
pair of flaps, including the
trapped point along with them.

31. Fold the three points
back down.

32. Carefully release
and pull out the trapped
corner.

33. Squash-fold the flap.

34. Pinch the flap in half and
swing it up to the left, using the
existing creases.

35. Squash-fold the flap. 36. Petal-fold the flap.
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47. Repeat steps 25–46 on the
right. Then rotate the model
1/2 turn.

1/2

25–46

43. Turn the paper back
over.
43. Turn the paper back
over.

44. Fold two points up.

45. Fold one layer on
each side to the center,
tucking the top into the
pockets.

46. Mountain-fold the
leg in half (edges away
from the head; see the
next step).

40. Like this. The
gussets are indicated by
the hidden lines.

41. Squash-fold the
corners.

42. Repeat on the next
layer up, tucking the
edges into pockets.

37. Mountain-fold the
thick flap behind. Turn
the paper over.

38. Fold and unfold
through all layers.

39. Pull out a double
layer of paper, forming
gussets in the interior.
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48. Open out the white edges.
Note the location of the angle
in the valley fold; above the
fold, the model will not lie flat.

49. Mountain-fold the near
layer of each leg inside and
valley-fold the far layer.

50. Crimp the body through
the angle change and curve the
sides around, so that the cross-
section is an inverted “U.”

51. From here onward, you may vary
the folds as you like to alter the shape
of the bird. Crimp the head downward,
keeping it rounded.

52. Crimp the beak. Pleat
the tail; repeat behind.

53. Round the tail. Double-
rabbit-ear the legs. Reverse-
fold the cheek.

54. Valley-fold the near
edge of the beak upward.
Repeat behind.

55. Open the beak. Spread
the toes. Shape the rest of
the body.

56. Finished Songbird.
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1. Begin with a square, white
side up. Fold and unfold
along both diagonals.

2. Fold the right edge to the
downward diagonal and
unfold.

3. Fold the bottom left corner
to the crease you just made so
that the crease passes through
the upper left corner; make a
pinch where it crosses the
diagonal and unfold.

KNL Dragon
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4. Fold the left edge over
to the crease intersection
and unfold. Repeat with the
bottom edge.

5. Mountain-fold through the
intersection of the last two creases
(the corner touches the marked
crease intersection) and unfold.

7. Steps 8–16 will focus
on the lower left corner.

8. Squash-fold the corner.

10. Fold and unfold
along angle bisectors.

11. Fold the corner up
and to the right.

12. Fold and unfold.

6. Make all three folds
at once, forming a small
Preliminary Fold in the
lower left corner.

9. Petal-fold the edge.
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13. Open-sink the
corners using the
existing creases.

14. Fold one layer
upward.

15. Repeat steps 8–14
on the other flap.

8–14

16. Fold one flap down
to the lower left.

18. Fold and unfold along the
diagonal. Then turn the paper
over from top to bottom.

17. Like this. Now we’ll go
back to working on the entire
model.

19. Fold and unfold in half both
vertically and horizontally.
Then rotate the paper 1/8 turn
clockwise.

20. Fold a Preliminary Fold
with the creases you just made.

1/8

21. Mountain-fold the corners
underneath as far as possible.
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22. Petal-fold front and rear. 23. Fold the two
flaps back down.

24. Fold the tip down
to the horizontal crease
and unfold.

25. Open-sink the top
corner.

26. Fold one layer to
the right in front and
one to the left behind.

27. Fold one flap up in
front and behind.

28. Crimp the two points out
to the sides.

29. Fold a rabbit ear from the
upright flap and swing it over
to the right. Repeat behind.
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32. Mountain-fold the corners to line up
with the edges of the reverse folds from
the previous steps.

33. Fold the left white point as far to the
right as possible and unfold. Repeat with
the left point and with both points behind.

31. Reverse-fold each of four edges down
to lie along the horizontal edges.

30. Fold a layer down in
front. Repeat behind.

34. Fold the front and back
flaps back upward.

35. Fold the front flap up so that the raw
corner is directly over the middle of the
model. Repeat behind.

36. Pull out some loose paper.
Repeat behind.

37. Mountain-fold the edge
inside the near pocket.

38. Fold the two points
front and rear to the left.

39. Reverse-fold two
points up.
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40. Reverse-fold the head
and tail twice each.

41. Steps 42–46 will
focus on the head.

46. Finished head. 47. Fold four rabbit ears
to make legs.

48. Pleat the wings. 49. Finished KNL Dragon.

42. Crimp the top layer. 43. Swivel the top flap
upward slightly.

44. Outside-reverse-fold
the bottom jaw. Outside-
reverse-fold the nose.

45. Outside-reverse-fold
the bottom jaw in and
out to make a tongue.
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1. Begin with a square, colored
side up. Fold and unfold along
one diagonal.

2. Fold the top edge down to
the diagonal and make a pinch
along the right edge.

3. Fold the top left corner down
to the bottom; make a pinch
along the left side and unfold.

4. Bring the two indicated points
together and make a pinch along
the bottom edge.

5. Fold the bottom right corner over
to the left so that the edges line up
and the crease goes through the mark
you just made; make the crease sharp
up to the diagonal and unfold.

Lizard
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8. Fold the bottom edge up so that
the corner touches the white corner
at the diagonal; crease all the way
across and unfold. Repeat with the
right edge.

9. Mountain-fold two corners
behind. Then turn the paper over
and rotate it so that the colored
corners are on the sides.

7. Fold the bottom right corner
up along the diagonal so that the
crease hits the edge at the same
place as the creases you just
made.

6. Fold the corner up so that the
edges line up and the crease hits
the diagonal at the same place;
make the crease sharp from the
diagonal to the right edge and
unfold.

10. Fold and unfold along
creases connecting the corners
to the crease intersection in the
center.

11. Fold a rabbit ear, bringing
the two top corners together
along the center line.

12. Reverse-fold the side points down
to lie along the center line.

14. Reverse-fold the edges.13. Squash-fold the white
flap symmetrically.
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16. Reverse-fold the
remaining pair of edges.

15. Reverse-fold the next
pair of edges.

17. Fold two layers
to the right in front
and one to the left
behind.

18. Fold the edge
over to the vertical
crease.

19. Fold the point up
to the top of the
model.

20. Fold the left edge
over to the crease
and unfold.

21. Fold the left edge
over to the crease
you just made and
unfold.

24. Fold one
flap to the left.

23. Fold the
point down.

22. Open-sink the
corner in and out on
the existing creases.
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26. Fold the white
edge to the center
line and unfold.

31. Close up
the flap.

36. Crimp the two
points out to the
sides and slightly
upward.

25. Fold one flap up
as far as possible.

30. Spread-sink
the corner.

35. Fold one layer to the
left in front and two to the
right behind, leaving the
model symmetric.

29. Open-sink the
corner in and out on
the existing creases.

34. Repeat steps
18–33 behind.

18–33

28. Fold the left edge
to the crease you just
made and unfold.

33. Fold the flap
down.

27. Fold the left edge
to the crease you just
made and unfold.

32. Open-sink the
corner on the
existing creases.
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37. Wrap one
colored layer from
inside to outside.

38. Sink the white
corners.

39. Reverse-fold the
hind legs out to the
sides.

40. Narrow the tail by
folding each side over and
over in thirds.

41. Partially rabbit-ear the tail
and turn the model over.

42. Reverse-fold the
hind legs.

43. Reverse-fold the hind feet.
Squash-fold the front feet and
mountain-fold the forelegs
away from you.

44. Crimp the head slightly and
pull out the layers on the sides
of the head. Curve the tail.

45. Finished Lizard.
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Tree Frog

1. Begin with a square, white
side up. Fold and unfold along
the diagonals. Turn the paper
over.

2. Fold and unfold vertically
and horizontally.

3. Fold the top left corner to the
center; make a pinch that
crosses the diagonal crease and
unfold.
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4. Fold the top edge to the pinch you
just made; make another pinch on the
diagonal crease and unfold.

5. Fold the bottom right corner
up to the crease intersection.

6. Like this. Turn the
paper over.

7. Fold the edge to the diagonal
crease, allowing the corner behind
to flip out.

8. Unfold the pleat and
turn the paper back over.

9. Repeat steps 3–8 on the other
three corners. Leave the paper
white side up when you’re done.

3–8

3–8 3–8

10. Fold a Waterbomb Base
using the existing creases.

11. Fold and unfold through
the crease intersections.

12. Open-sink the point in and out.
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13. Fold two edges down. 14. Reverse-fold two corners out. 15. Steps 16–28 will focus on the
region in the circle.

16. Pull the near layer to
the right and release some
trapped paper. You may
find it easier to do steps
16–19 all at once.

17. Close up the model. 18. Fold the corner down
and squash-fold the
interior corner.

19. Unsink a layer of paper
from inside the petal fold.
The result should be
symmetric.

23. Fold and unfold
along angle bisectors.

27. Fold the two
flaps down.

22. Spread-sink
the edges.

26. Turn the paper over.

16–20

21. Repeat steps
16–20 on the left.

25. Close up the flaps.

20. Close up the flap.

24. Spread-sink two
corners.
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22–25

28. Repeat steps
22–25 on this side.

29. Bring the bottom left and right corners
together, swinging the excess paper to the
left in front and to the right behind. Spread
the extra layers up near the tip evenly, front
to back.

30. Squash-fold the left flap
in front and the opposite
flap behind, spreading the
thick layers up near the tip
symmetrically.

31. Reverse-fold in the
two remaining flaps.

32. Petal-fold the
edge in front.

33. Fold the side
corners to the
center and unfold.

34. Open-sink the
corners on the creases
you just made.

35. Fold and unfold
through all layers.

36. Fold the small
point down as far as
possible.

37. Lift up the point and
squeeze it in half, forming a
rabbit ear from a single layer
of paper and opening out a
layer on the lower flaps. The
paper will not lie flat.

38. Fold the raw
edge inside on
existing creases.
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43. Squash-fold the
top and flatten.

44. Fold a small
point down.

45. Fold one wide
layer to the right in
front and one to the
left behind.

46. Repeat steps
32–40 in front and
behind.

39. Stretch the two near
points out to the sides.

40. Tuck the paper
underneath and close
the model up.

47. Fold half the
layers to the right
in front and half to
the left behind.

48. Fold a single
flap along the
folded edge and
unfold.

49. Reverse-fold two
edges and stretch the
flap over to the right.
The result will not lie
flat.

50. Make a small
crimp across the
flap and close it up.

51. Reverse-fold
the corner back to
the left.

52. Repeat steps
48–51 on the other
three flaps.

48–5148–51

48–51

41. Turn the
model over.

42. Repeat steps
32–38 on this side.

32–38

32–40 32–40
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53. Steps 54–62
will focus on the
flap in the circle.

54. Reverse-fold
the flap to the
right along creases
aligned with the
folded edge.

55. Reverse-fold
the flap downward
so that the raw
edges are aligned.

56. Fold the tip of
the flap up and
unfold.

57. Crimp the tip
upward so that the
raw edge ends up
horizontal.

58. Reverse-fold
the tip inside.

59. Reverse-fold
the edge.

60. Reverse-fold
three edges back
to the left.

61. Reverse-fold
three edges back
to the right.

62. Like this.

63. Repeat steps
54–62 on the right
near flap.

54–62

64. Turn the
model over. 65. Steps 66–76

will focus on the
flap in the circle.
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68. Reverse-fold
the flap back to
the left along
vertical creases.

69. Reverse-fold the two
small corners to the right
(one in front, one behind).

70. Reverse-fold the
larger flap along creases
aligned with the folded
edges.

71. Reverse-fold the
larger flap to the left
along vertical creases.

72. Reverse-fold
the point so that
its right edge is
vertical.

73. Reverse-fold two flaps
to the right so that a crease
lines up with a folded edge
in each reverse fold.

74. Reverse-fold
four flaps along
vertical creases.

75. Reverse-fold the
four flaps so that the
raw edges are all
vertical.

76. Like this.

77. Repeat steps
66–76 on the right
flap.

66–76

78. Steps 79–83
will focus on the
top of the model.

79. Reverse-fold two
points out to the sides.

80. Mountain-fold the
near layers. Valley-fold
the far layers.

66. Divide the flap
into quarters along
the bottom edge.

67. Reverse-fold
along a line that
connects to the
rightmost mark.
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81. Fold down two layers
from the front and two layers
from the rear of each of the
two small points.

82. Pull out the layers and
spread each point into a
smooth bulging eye.

83. Blunt the nose.

84. Fold and
unfold through
the near layers.

85. Fold the small
point upward.

86. Fold a
single layer in
on each side.

87. Sink the
corners on the
existing creases.

88. Fold the
small point
back down.

89. Fold the near pair
of flaps out and slightly
upward.

90. Reverse-fold the
legs downward and
toward each other.

91. Mountain-fold the sides of
the body and swivel the lower
edges of the legs upward. Repeat
on the far side of the legs.
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92. Mountain-fold the
corners at the bottoms
of the legs.

93. Reverse-fold the
knees and narrow the
legs on both near and
far sides.

94. Turn the
model over.

95. Reverse-fold the two
bottom flaps up and then out
to the sides (it’s easier to do
both reverse folds on each leg
before flattening). Divide the
layers asymmetrically, with
one layer on the near side and
three on the far side.

96. Fold the one near edge
of each leg flap down and
the three far edges behind.

97. Narrow the body with
mountain and valley folds
that line up with the edges
behind.

98. Crimp the forefeet,
spreading the layers
symmetrically. Turn the
model over.

99. Crimp the forelegs and
bend them downward.
Crimp the feet so that they
point slightly forward.

100. Spread the toes.
Mountain-fold the back.
Shape the body.

101. Finished Tree Frog.
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1. Begin with a square, white side
up. Fold and unfold in half
vertically and horizontally. Then
turn the paper over.

2. Fold and unfold along both
diagonals.

3. Fold and unfold along an angle
bisector.

4. Fold and unfold. 5. Fold and unfold.

Dancing Crane
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6. Fold and unfold. 7. Add three more creases through
the indicated intersections. Turn
the paper over.

8. Form a Preliminary Fold. Rotate
1/8 turn.

1/8

9. Divide into fourths with vertical
creases. Repeat behind.

10. Fold and unfold. Repeat
behind.

11. Reverse-fold. Repeat behind.

12. Reverse-fold in and out
on the existing creases.
Repeat behind.

13. Spread-sink eight
corners.

14. Fold and unfold
only through the near
pair of flaps.

15. Elias-stretch the flap
and open it out.
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16. Fold and unfold. 17. Fold and unfold. 18. Fold and unfold. 19. Close up the flap,
incorporating the
creases shown.

20. Reverse-fold the
corner.

21. Reverse-fold three
corners.

22. Fold one flap to the
right.

23. Repeat on the left.

15–21
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24. Bring two corners
to the front.

25. Turn the model
over.

26. Unfold a layer. 27. Fold and unfold
through all layers of the
near flap.

28. Fold the flap to the
top of the model.

29. Fold the flap down
and out to the right.

30. Fold and unfold
through all thicknesses
of the flap.

31. Closed-sink the
farthest layer on the
existing creases.

Folding Instructions: Dancing Crane
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32. Closed-sink the
layer back upward.

33. Closed-sink the
layer one last time.

34. Repeat on the next
farthest layer.

31–33 31–33

35. Repeat on the next
layer.

36. Repeat on the
remaining layer.

31–33

37. Fold the flap
to the right.

38. Repeat on the left.

28–36

39. The next few steps
will focus on the foot.
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40. Elias-stretch the
pleated section.

41. Fold the flap up. 42. Close the flap.

43. Reverse-fold two
corners.

44. Reverse-fold the
near and far edges.

45. Sink the remaining
pair of corners. All the
folded edges should be
aligned.

46. Like this.

40–45

47. Repeat on the left. 48. Fold the flap down
so that its edge lies
along the center line.

Folding Instructions: Dancing Crane
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49. Turn the model over. 50. Fold the wings up
and out to the sides. 51. Fold the left wing over to

the right, swivel-folding at its
base.

52. Slide a group of layers
downward as far as possible.

53. Fold a raw edge over to
the left as far as possible.

54. Fold the wing back to the
left.

55. Repeat on the right.

51–54

56. Fold one layer over to the
right, threading it through the
gap between the sides.

57. Bring the left side to the
front.
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58. Spread the tips of the
wings, forming pleats
internally to take up the excess
paper.

59. Reverse-fold the corner. 60. Reverse-fold the corner.

61. Repeat in four places.

59–60, 4×

62. Repeat on the right side.

59–60, 5×

63. Turn the model over.

64. Fold two layers together
on each side.

65. Fold one layer up on each
side.

66. Fold the next layer up as
far as possible.

Folding Instructions: Dancing Crane
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69. Narrow the point by 1/3,
folding each layer individually.

67. Fold the remaining layer
up inside the wing.

68. Turn the model back over.

70. Form the body into a U
shape while crimping the neck.
Rotate 1/4 turn.

1/4

71. Narrow the neck with mountain
folds. Crimp the beak.

72. Narrow the legs. Crimp the neck
and tail. Position the wings and head.

73. Finished Dancing Crane.
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7
imple grafting can take the form of borders 
(whole or partial) around the paper or strips that 
propagate inward from the edges of the paper. 
The strip grafts you’ve seen thus far use pleats 
to add paper along the edges of the square in 

order to expand appendages. But it’s also possible to use the 
pleats themselves as the additional feature of the model, for 
example, to create a pattern in an expanse of paper. In the 
best of all possible worlds, one can add pleats that both create 
extra paper in appendages and create a useful pattern in the 
rest of the model. In this way, all of the added paper makes a 
contribution to the overall model.

7.1. Pleated Patterns
An ideal candidate for this sort of two-for-the-price-of-one design 
is a turtle. There are many origami turtles—not as many as 
there are elephants, but still quite a few—nearly all of which 
have smooth shells. But the pattern of plates on a turtle’s shell 
is a distinctive feature of the animal (beyond the presence of 
the shell itself, of course), and in recent years, several designers 
have taken it as a challenge to fold the plate pattern as part 
of the shell, with varying results. Using strip grafting, it is a 
relatively straightforward process to add pleats to the shell of 
an otherwise smooth-shell turtle design in order to create the 
natural pattern of plates. As a bonus, we can use the pleats to 
add detail to other parts of the model.

Here’s how we do it: Figure 7.1 shows the structure of a 
simple turtle. It’s easy to fold and has a very simple structure. 
As we have done before, it is useful to examine the base and the 
crease pattern as well as the folded model in order to establish 

Pattern Grafting
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correspondences between features of the crease pattern and 
features of the model, using the base as an intermediate posi-
tion.

In this case, the base isn’t one of the Classic Bases, but 
one can apply grafting to any preexisting base. An important 
observation here is that the underlying structure of this base 
is actually a rectangle rather than a square. The strip of paper 
along the top of the crease pattern really isn’t necessary to the 
base, something you can easily verify by cutting off the strip 
and re-folding the base, which still has all of its flaps.

If we examine the base of the Turtle and its crease pattern, 
we see that the flat diamond shape in the middle of the crease 
pattern gives rise to the shell (as well as the head and tail). It 
would be a fairly simple task to decorate it with lines to outline 
the plates of a real turtle’s shell, as in Figure 7.2.

Figure 7.1. 
Crease pattern, base, and folded model of the Turtle.

Figure 7.2. 
The Turtle shell with a plate 
pattern overlaid upon it.
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We can use grafts to replicate the pattern of lines by run-
ning pleats composed of strips of paper along each of the lines; 
the folded edges of the pleats will then produce the shell pat-
tern. But where should the pleats go in the crease pattern? A 
reasonable way to proceed with the design is to fold the simple 
turtle, draw the plate pattern on the back, and then unfold the 
shell to see where the pattern winds up on the unfolded square. 
The result is shown in Figure 7.3.

Figure 7.3. 
The unfolded shell with the 
plate pattern placed on the 
region that becomes the shell. 
Note that the colored wedges 
are concealed by pleats in the 
folded model.tail

foreleg

hind leg hind leg

foreleg

head

Now, we could, in principle, precisely replicate this pat-
tern of lines with pleats, but in striking a balance between 
exact reproduction and elegance of line, it’s usually desirable 
to simplify the pattern, focusing attention on a smaller number 
of distinctive lines rather than overwhelming the viewer with a 
clutter of lines. It is visually pleasing and gives cleaner folding 
patterns to make the pattern fairly symmetric. Since the crease 
pattern itself has a strong 60° angle symmetry throughout, it 
is not unreasonable to adopt that symmetry for the pattern of 
plates as well. I therefore chose a simplified pleat pattern as 
shown in Figure 7.4.

The simplifications are twofold: First, I force all lines to 
lie at multiples of 60°, which makes them match up with the 
lines in the rest of the model; I also eliminate the oval of lines 
going all the way around, figuring that I can create this line 
by folding up the edge of the shell in the finished shape. That 
leaves just three wide hexagons, plus ten pleats radiating away 
from them. The decision to force lines to run at multiples of 
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60° is aesthetic; it moves the lines away from the more evenly 
distributed lines of nature, but by keeping to the natural sym-
metry of the underlying crease pattern, we create the possibility 
of fortuitous alignments of the creases, leading (we hope) to a 
relatively elegant folding method.

The pleats are only needed on the shell, but pleats have 
to propagate all the way to an edge (or terminate at a junction 
of other pleats), so I extend the pleat lines all the way to the 
edge of the paper as shown in Figure 7.5.

Figure 7.4. 
The desired pattern of pleat 
lines on the shell. tail

foreleg

hind leg hind leg

foreleg

head

Figure 7.5. 
The shell pattern with pleats 
extended to the edges of the 
paper.

head

tail

foreleg

hind leg hind leg

foreleg
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To form the pleat lines, we need to give the pleats finite 
width, which we do by (effectively) cutting the crease pattern 
apart on the crease lines and inserting finite-width strips of 
paper as shown in Figure 7.6.

Figure 7.6. 
The crease pattern with paper 
inserted for pleats.tail

foreleg

hind leg hind leg

foreleg

head

Because some of the pleats hit the edge of the paper at an 
angle, when we insert finite-width pleats, the paper becomes no 
longer square. We’ll fix that up in a minute. But first, let’s see 
if we can do anything more with these pleats. Observe that one 
pleat already hits the edge of the paper at one of the appendages 
(the hind legs). This will allow us to use the paper in the pleat 
to make a fancier hind foot (with toes, for example); this paper 
comes for free. If we’re going to add paper to the hind feet, we 
might as well do the same for the front feet, and so I add another 
pleat near the top of the square that comes out at the front feet, 
as shown in Figure 7.7.

Having added pleats to decorate the shell and produce 
more complex feet, the paper’s overall dimensions have become 
roughly rectangular. To get it back to a square, we could add 
more paper along the sides, or we could cut some off the top or 
bottom. Looking back at the original crease pattern, recall that 
the small strip running along the top of the square wasn’t used 
for anything in the original base. So we could cut it off without 
losing anything from the base; we could have folded the original 
turtle from a rectangle that is shorter in height than width.
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On the other hand, the pleats we’ve added have increased 
the height of the square much more than they have increased 
its width. If we select the pleat width carefully, we can arrange 
matters so that the added height (from the pleats) and the 
lost height (from taking off the top strip) precisely cancel each 
other out, resulting in a perfect square once again, as shown 
in Figure 7.8.

Figure 7.7. 
The crease pattern with pleats 
for both front and hind feet. tail

foreleg

hind leg hind leg

foreleg

head

Figure 7.8. 
The final crease pattern, back to 
square and with strip grafts for 
shell pattern and feet.

tail

hind leg

foreleg

hind leg

foreleg

head
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Now, we can form the pleats to create the shell and use 
the excess paper where the pleats hit the edges to make more 
detailed feet; the result takes a simple model to a new level.

Figure 7.9. 
Crease pattern, base, and folded model of the Western Pond Turtle.

I call this use of multiple intersecting pleated strips 
pleat grafting. While you can use pleat grafts on any model to 
add more detail here and there, there is always an aesthetic 
balancing act to such surgery: Are the added complexity and 
extra layers of paper justified by the appearance of the finished 
result? This balance is, ultimately, a matter of personal taste. 
However, as you become more accustomed to folding complex 
structures and/or fine detail, the perceived burden of added 
complexity diminishes over time with your folding experience. 
And if you can use the added pleats for multiple purposes (as 
we did to create both shell pattern and more detailed feet) or to 
eliminate an inefficiency in the original base (which we also did 
in this example), then the balance will, more and more often, 
tip in the direction of detail.

Most applications of grafting serve to create distinct flaps 
or appendages, but the turtle shell is a bit different. Here we 
are not creating flaps; we are creating a patterned surface. 
This opens up a large range of possibilities: incorporation of 
patterns into origami models to represent subjects that have 
a strong textural visual impact. As we did with the Turtle, we 
can create a texture and overlay it onto the paper before folding 
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the figure, or (better yet) incorporate the folds that create the 
texture into the folds that create the rest of the model.

7.2. Pleated Textures
The concept of origami texture as art in itself was widely 
explored by French artist and folder Jean-Claude Correia in 
the 1980s. Correia adopted the technique of creating crossing 
grids of pleats, then manipulated the excess paper created at 
the pleat intersections. While Correia’s work was primarily 
abstract, the technique has been adopted by several artists 
to combine textures with representational origami; an early 
hedgehog by John Richardson  used crossed pleats to make a 
grid of short spines on a three-dimensional body. The technique 
perhaps reached its zenith in animal subjects in Eric Joisel’s 
Pangolin, in which crossed pleats of varying sizes created the 
scaled body of a primitive anteater.

The basic concept of a pattern graft is to create a regular 
pattern of creases that emulates some regular pattern present 
in the subject. The simplest possible pattern is formed by mak-
ing a row of parallel pleats in one direction, then again at 90° 
to the first; this creates a grid of squares (or, depending on your 
orientation, diamonds). The resulting pattern resembles scales, 
which is perhaps why most patterned subjects have tended to be 
scaly: snakes, dragons, scaled anteaters, and the like.

Figure 7.10. 
Left: crossed pleats. 
Middle: the folded structure. 
Right: crossed pleats at 45° create a grid of diamonds.

There is nothing that says one can’t use other patterns, 
however; it is possible to take many regular tiling patterns 
and create pleated origami representations of them. Building 
on work by Fujimoto and Momotani, origami artist Chris K. 
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Palmer launched an entire genre of origami by doing exactly 
that. For representational origami, however, the patterns one 
can create are restricted to those that resemble some subject, 
which tends to favor fairly simple patterns. Grids of squares or 
diamonds are straightforward: Make crossing sets of pleats. It’s 
also possible to make grids of triangles and/or hexagons (you 
saw a small piece of the latter in the turtle shell), but these 
are somewhat harder to fold as they require three different 
directions of pleats to interact.

The pattern, or texture, grafted into a model is generally 
going to be dictated by the pattern in the subject. One subject 
that seems natural for texturizing is a fish: Like the previously 
done snakes and dragons, a fish has prominent scales. We’ll use 
a particular fish model—a Koi, or Japanese carp—to illustrate 
the process of adding texture to a model and some of the design 
considerations that ensue.

The simplest way to create texture in a model is to select 
a simple version of the model foldable from a square, then add 
texture to the square in such a way that it remains square 
and the pattern ends up in the appropriate part of the square 
exposed in the folded model. We did this in the Turtle; we can 
apply the same approach to a Koi. The process begins with a 
model, of course: We’ll use the Koi illustrated in Figure 7.11, 
which is folded from a square. (This Koi was created by putting 
a border graft onto a modified Kite Base to create longer fins 
and tail; can you identify the original base and graft?).

Figure 7.11. 
Crease pattern, base, and folded model of the Koi.
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So now, let’s look at what type of pattern we’d put on this 
design. Fish have a distinctive pattern of overlapping scales 
that is very close to a pattern of overlapping half-circles, similar 
to the pattern shown in Figure 7.12.

Figure 7.12. 
Left: a single fish scale, abstractly represented by a half-circle. 
Middle: an array of half-circles approximating an array of fish scales.
Right: an array of crossed pleats at 45° approximating the lines of 
the array of scales.

If we overlay lines on top of the half-circles as shown in 
Figure 7.12, we can elucidate the underlying grid of the pattern; 
it is the same as the grid of crossed pleats rotated by 45°, which 
suggests that a grid of crossed pleats is a good place to start.

However, crossed pleats alone gives scales that are dia-
monds, not semicircles. A better approximation of circles can 
be had by blunting the tips of the squares, for example, with 
sink folds. But if you fold up an array of crossed pleats to work 
on, you will find that the tips of all squares are entangled with 
other layers of the pleats and need to be freed before they can 
be sunk. So a bit more folding is going to be necessary. In order 
to be efficient about it, let’s make a single crossed pleat to work 
on, as shown in Figure 7.13.

The tip of the scale is marked A in the folding sequence 
in Figure 7.13. If we wish to blunt the tip, we must first free 
it from the entangled layers, which we can do by stretching 
the two pleats apart on either side of the tip as shown in 
Figure 7.14.
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Figure 7.13. 
Folding sequence for a single pair of crossed pleats.

1. Begin with a square. Fold and
unfold from side to side and top to
bottom. Turn the paper over.

2. Use the existing mountain fold to
make a pleat in the paper.

3. Use the other mountain fold to
make a vertical pleat of the same
width.

4. Rotate the paper 3/8 turn
counterclockwise.

3/8

5. Here is a single pleat in the
orientation of the fish scale.

A

6. Stretch the two edges away from
the pleat so that the trapped paper is
released. The result will not lie flat.

A

7. Squash-fold the excess paper
symmetrically.

A

8. The flap is now released.

A

Figure 7.14. 
Stretching and releasing the trapped corner.
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When the square has been released, there is a tiny Pre-
liminary Fold in the layers underneath. We then can sink the 
tip of the square, but only to the depth allowed by the edges of 
the Preliminary Fold.

Figure 7.15. 
Now that the tip has been freed, it can be sunk.

9. Sink the tip. 10. The tip is now sunk.

Now this was just a single pleat. We can make an array 
of scales from an array of these pleats. An array of pleats is 
defined by three quantities: the direction of the pleats, the width 
of each pleat, and the spacing from one pleat to the next. We 
have chosen the direction to be 45°. For a given pleat width, 
there is one degree of freedom left to choose: the spacing of 
the pleats relative to the pleat width. To make this choice, we 
should extract the structure of the pleat crossing, and use that 
as a basic element to be replicated. That structural element 
consists of the visible fold lines of the pleats (and, if you like, 
the hidden edges of the pleats), as shown in Figure 7.16.

Figure 7.16. 
Left: a single pleat. 
Right: the structural elements 
of the pleat crossing.
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A single pleat crossing can be thought of as an individ-
ual tile. To develop an approximation of the pattern of  
semicircles, we should array tiles containing the lines of 
the pleat crossings in such a way that they create a similar  
pattern. Figure 7.17 shows such an array, filling in over the 
semicircular array.

Figure 7.17. 
Left: two tiles of crease pattern. 
Right: the tiles arrayed over the 
pattern of semicircles.

One can think of this operation as cutting out small tiles 
of pleats, then taping them together edge-to-edge to realize the 
larger array. We can do this to both the folded and unfolded 
form of the paper. The folded form gives the folded array; the 
unfolded form gives the crease pattern necessary to realize the 
array. Figure 7.18 shows, first, a single tile.

What we define as the edges of the tile is somewhat arbi-
trary; what matters most is the tile-to-tile spacing, which sets 
the overall periodicity of the scale array. In Figure 7.18, I have 
chosen the tile boundary so that the visible portion of each scale 
is a quarter of an equilateral octagon. We can create an array 
of such octagonal scales by putting together an array of scale 
tiles, as shown in Figure 7.19.

And then, once we have created our array, we can (figu-
ratively) tape the patterns together as we did with individual 
grafts in order to create a single-sheet array.

Figure 7.18. 
Left: the folded tile. 
Right: the crease pattern.
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Figure 7.19. 
Left: an array of folded tiles forming the scale pattern. 
Right: the same array of crease pattern tiles.

Figure 7.20. 
Left: a 3 × 3 folded array of scales from a single sheet. 
Right: its crease pattern.
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A concern with all pattern grafts is efficiency: How much 
paper is consumed by the pattern? This concern can be quanti-
fied as the ratio between the area of the pleated structure and 
the original paper. This ratio can be calculated by comparing 
the areas of the entire array or, equivalently, from a single 
tile. Figure 7.21 gives the dimensions of the folded form and 
crease pattern. The dimensions are relative, of course; I have 
picked a convenient dimension to be 1 “unit” from which all of 
the other dimensions follow.

Figure 7.21. 
Comparison of the tile sizes for 
the folded and unfolded tile.

Figure 7.22. 
The number of layers of paper 
in each region of the tile.
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1

3
1

1

1

3 3

5

5

3

13

This comparison shows that the unfolded tile is about 
83% larger in linear size (hence about 3.3 times the area) of 
the folded tile. That means that on average, there are two to 
three layers of paper everywhere in the pattern—quite a bit 
of thickness for folding. But that’s the average; individual re-
gions of the pattern can be considerably thicker, as shown in 
Figure 7.22, which lists the number of layers in each region of 
the basic tile.

This shows that there are as many as 13 layers in the 
pattern, which means that any subsequent folding that goes 
on will require folding through quite thick layers.

But there’s nothing particularly special about this pat-
tern tile. There is much variety possible in creating sinks and 
rearrangements of layers around two crossed pleats. A bit of 

© 2012 by Taylor & Francis Group, LLC



212 Origami Design Secrets, Second Edition

Figure 7.24. 
Dimensions of the new scale 
tile.

1

1+√2

2+√2

2 + 2√2
2 + √2

≈1.41

1/√2

1+1/√2

1+√2
2+2√2

experimentation reveals a somewhat more efficient tile, shown 
in Figure 7.23 in both folded form and crease pattern.

In this second tile, the crease pattern is 41% larger than the 
folded form (2.0 times in area), so is more efficient in its use of 
paper than our first scale pattern, as shown in Figure 7.24. 

In fact, the maximum number of layers in any region of this 
tile (seven) is roughly half of the maximum for the sunken-tip 
pattern, as shown in Figure 7.25. Its efficiency comes from the 
fact that, relatively speaking, the pleats are half the width of 
the pleats in the previous pattern.

An interesting side note: Did you notice that all regions 
have an odd number of layers? It’s not hard to show that this 

Figure 7.23. 
Another tile unit for fish scales 
that is more efficient. Top: the 
tile and its crease pattern. 
Bottom: a 2 × 2 array and its 
crease pattern.
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must always be the case for a tile whose raw edges are aligned 
along the boundary of the tile. There is an enormous body of 
work concerning the mathematics of origami pleat tilings—far 
too much to go into here. For our purposes, it is sufficient that 
the tiles can be combined into arbitrarily large areas of pat-
terned regions with pleats emanating from their edges.

Now, we can turn our attention back to the original object 
of study: the Koi. For this figure, it would be nice to add scales 
to the body, but not the head, tail, or pectoral fins. So the first 
thing to do is to identify which parts of the paper will be exposed 
in the folded model. We should divide the square up into three 
categories: (a) those parts of the paper that become the body 
(these should have the pattern exposed); (b) those parts of the 
paper that become the head and fins (these should not have 
the pattern exposed); and (c) those parts of the paper that are 
hidden by other layers (these may or may not get the pattern, 
depending on how we are constrained by the pattern we choose). 
Obviously, it’s fairly wasteful to put a lot of effort (and folding) 
into creating a pattern that will never see the light of exterior 
view, but since patterns may not be created in isolation but are 
part of a connected whole, it may be necessary to extend the 
pattern into subsequently hidden regions in order to form the 
entire structure. Figure 7.26 shows these regions, color-coded. 
The body is colored. We would not like the pattern to extend 
onto the fins or the head, so those are colored gray; then the 
lightest regions are those we don’t care about. Note that any 
region covered by another (the way the front of the body is 
covered by the head) falls into the “don’t care” category.

The task now is to fill in the colored regions with a scale 
pattern while avoiding the gray regions. This is not as easy as 
it sounds, because pleated scales don’t exist in isolation: They 
are terminated by pleats on four sides. If we represent a pleat 
schematically by a single line, then an array of crossing pleats 
can be represented by two arrays of crossing parallel lines, as 
in Figure 7.27.

Figure 7.25. 
Number of layers in each region 
of the efficient scale tile.
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Figure 7.27. 
Two sets of crossing pleats. 
Each pleat is represented by a 
single line.

We can form scales only where two sets of pleats actually 
cross at right angles. Conversely, anywhere the pleats cross, 
we will have scale patterns (or at least the busyness of cross-
ing pleats), whether intentional or inadvertent. And in any 
region crossed by a single set of pleats, we won’t have scales 
or unadorned paper; we will have a pattern of parallel lines, 
which may or may not be desirable in any given model, but is 
surely to be minimized in this Koi design.

So, we can overlay arrays of pleats represented by lines 
on the crease pattern and see what’s possible, as shown in 
Figure 7.28. The number of scales is somewhat arbitrary; in 
this example, I have set up a 20 × 20 array of lines, defining 
a 19 × 19 array of scales, each scale signified by a square be-
tween pairs of crossing lines.

This is close, but not ideal. There are a few regions of the 
body that don’t get both sets of pleats: near the tail fin and 

Figure 7.26. 
Left: color-coded crease pattern. 
Right: corresponding color-coded regions of the Koi.
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Figure 7.28. 
The crease pattern with two 
sets of pleats arrayed across 
the middle.

Figure 7.29. 
Modified crease and pleat 
pattern.

near the pectoral fins. These regions are highlighted in yellow 
in Figure 7.28. So those regions will not have scales; they will 
have sets of parallel lines instead. However, if we added more 
pleats to fill in those areas with scales, the pleats will start 
encroaching on the head and tail, respectively. We can reduce 
the uncovered region just a bit if we allow some pleats on the 
tail and alter the proportions of the head, to something like 
Figure 7.29.
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In Figure 7.29, the head has been slightly reduced in size 
and the pleats have been allowed to creep into the edges of the 
head and the tail. This seems like an acceptable tradeoff to get 
the body nearly fully covered.

The next step in the construction would be the same as 
what we did with the Turtle: we replace each of the pleat lines 
with a strip of paper for the pleat. How wide?

To address this, we need to look at the details of how a tile 
should map to a pleat line. In essence, we are using a line to 
represent the paper that is hidden in the tile. So let’s look at 
the tile and identify the hidden paper; see Figure 7.30. 

Figure 7.30. 
Left: in the folded form, the 
nearly hidden pleat contains 
the layers of paper that are not 
visible. Right: the shaded region 
indicates the hidden paper in 
the crease pattern.

hidden hidden

It is this hidden paper that must map to each line in our 
schematic of the scale pattern overlaid on the crease pattern, 
as illustrated in Figure 7.31. Up to now, I’ve been showing tile 
crease patterns from the colored side of the paper, but let’s now 
flip the tile over so that, like the Koi pattern of Figures 7.28 
and 7.29, we’re looking at the white side of the paper.

Now we can precisely determine the dimensions of the 
scale pattern. In Figure 7.31, the distance marked d0 is the 
width of the visible part of each individual scale in the hori-
zontal direction; the folded array of scales will be periodic with 
spacing d0. To achieve this size and spacing, we must make 
parallel pleats with spacings d1 and d2, as shown on the bottom 
of the figure. From the geometry of each scale, we can calculate 
these relationships:

(7–1)

(7–2)

d = (1 + 1/√2) d0,

d2 = (1/√2) d0.
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d1 d2
d0

Figure 7.31. 
Close-up of the edge of the pattern, showing how the individual scale 
tiles map to the crease pattern. The hidden region of paper in each 
tile maps to one of the lines in our schematic.

To make things concrete: if we choose to make 1-cm scales 
(a nice size), then the pleats should be 1.207 cm and 0.207 cm 
apart, respectively (which, in practice, one can round to 1.2 
and 0.2 cm for easy measurement).

And how do we actually go about folding the individual 
scales? One factor that should be apparent is that the overall 
structure of each scale is two crossing pleats, with some “extra 
stuff” at the crossing. That suggests a method of folding each 
scale. We could fold the two pleats separately, then stretch 
the crossing apart and refold the “extra stuff,” as shown in 
Figure 7.32.

This two-step method of folding the scale allows one to 
more easily fold the entire array. One can fold all of the pleats 
in one direction, then all of the pleats in the other direction, 
then, one at a time, go through and at each crossing, stretch the 
crossing and refold the creases at the junction, then flatten. In 
this way, the folded paper may be kept flat between each of the 
folding steps. (As a practical note, I find that precreasing the 
pleats and the two concentric squares at each crossing before 
folding anything facilitates keeping the stretch maneuvers 
crisp and precise.)
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Figure 7.32. 
Folding sequence for a single scale.

3. Pleat the paper in one
direction.

4. Pleat the paper
in the other
direction.

5. Stretch the pleats
apart to free the corner.

6. Stretch the four edges
apart to completely flatten
the top on the outer
concentric square.

7. Form a Windmill Base
from the center and press
flat.

8. The finished scale.

1. Crease the two pleats
in each direction.

2. Precrease the two
concentric squares, using
the spacing of the paired
pleats as a guide.

Putting this all together, Figure 7.33 shows a set of dimen-
sions for the initial pleats that gives 1-cm scales and a finished 
length of about 30 cm from a 51-cm square.

So, the folding sequence is: (a) insert the pleats into the 
crease pattern; (b) form all of the pleats (and the scales from 
the small structure in between); (c) continue with the regular 
folding sequence of the Koi. If you work your way through 
folding the entire model, you can congratulate yourself both on 
your understanding of the design process and, because there 
are some 400 scale crossings to be shaped, your fortitude.
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Figure 7.33. 
Dimensions and pleats for a 20 
× 20 array of pleats that gives a 
scaled Koi.

12.2 cm

20 pleats
0.2 cm 1.2 cm

12.0 cm

Head

Tail

Fin

Fin

Figure 7.34. 
The completed Koi with scales.
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Folding Instructions

Turtle

Western Pond Turtle

Koi
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1. Begin with a square, white
side up. Fold the paper in half,
making a pinch along the top
and bottom edges. Unfold.

2. Fold the left side in to the
center line, making a crease
that extends about halfway up.

3. Fold the lower right corner
over to touch the crease you
just made.

4. Fold the edge of the flap
over to lie along the right edge.

5. Fold the bottom left corner
over to line up with the right
corner.

6. Fold the corner back to the
left.

7. Fold the two corners down
to lie along the center line.

Turtle
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8. Fold the two top corners
down to lie along the raw
edges.

9. Fold the top edge down
along a crease that runs from
corner to corner.

10. Unfold the two flaps.

11. Fold the top corners down
to the side corners; crease all
the way across and unfold.

12. Fold the top left corner
down to the right side corner,
crease, and unfold. Repeat
with the top right corner. Turn
the paper over.

13. Crease from corner to
corner in both directions. Turn
the paper back over.

14. Collapse the model
on the existing creases.

15. Squash-fold the
two edges (like half
of a petal fold).

16. Squash-fold the
two remaining edges,
including the two
loose flaps.

17. Fold the near layers
over and over in thirds.
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18. Fold two flaps
downward. Note the
corners marked A and B.

19. Reverse-fold four flaps
out to the sides. Do not
include corners A and B in
the reverse folds.

20. Observe that
corners A and B remain
flat. Reverse-fold the
tips of the legs

21. Reverse-fold the
tips of the hind legs.

22. Reverse-fold the
tips of all four legs.
Turn the model over
from side to side.

23. Divide the
bottom point into
thirds with creases
that line up with
folded edges behind.

24. Pleat the top and
bottom and curve the shell
to make it rounded. The
tail pleats are on existing
creases; the head pleats
have vertical valley folds.

25. Pleat the head and tail;
these pleats lock the pleats
made in the previous step.

26. Puff out the head. Pinch
the tail to make it three-
dimensional. Round the shell
and shape the legs.

27. Finished Turtle.

A B

A B
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1. Begin with a square, white
side up. Make a pinch along the
bottom edge extending about
1/10 of the way up.

2. Fold the bottom corner over
to the mark, pinch at top and
bottom, and unfold.

3. Fold the right edge over to
the two pinches you just made;
make a pinch along the bottom
and unfold.

There are three ways to get the reference points and guidelines for this model, depending on your desire for folding
purity and tolerance of leftover creases on the paper:
1. Folding only—follow all steps as instructed.
2. Marking and folding—follow steps 1–13; draw lines instead of making creases in steps 14–20; continue folding
from step 21.
3. Measuring, marking, and folding—divide the top edge into 39ths and the bottom edge into 78ths; jump to step 14;
draw lines instead of creases in steps 14–20; continue folding from step 21.

Folding Instructions: Western Pond Turtle

Western Pond  
Turtle
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4. Fold the right edge over so that the
corner hits the mark you just made;
pinch at top and bottom and unfold.

5. Fold the left two corners over to
the mark you just made; pinch at top
and bottom and unfold. This divides
in half the distance between the corner
and mark.

6. Make pinches between the pairs
of marks at top and bottom, dividing
into quarters.

7. Make pinches between the pairs
of marks at top and bottom, dividing
into eighths.

8. Divide again, getting sixteenths. 9. One more time, getting thirty-
seconds.

10. Fold the right corners to the last-
but-one mark, pinch, and unfold.

11. Divide the distance into quarters. 12. Divide each of the three gaps in
half. When you are done, you will
have divided the top and bottom edges
into 39 equal divisions.
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14. The top is divided into 39ths; the bottom is divided
into 78ths. Number the divisions from the left. Make 12
creases that connect top-0 with bottom-45, top-1 with
bottom-47, and so forth, up to top-11 with bottom-67.

15. Do the same thing going the other direction. 16. Fold each top corner down so that its edge lies
along one of the creases and unfold.

11 780 33

28 390

45 780 67

11 390

13. Divide each of the gaps along the bottom edge
in half.
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17. Add a crease connecting bottom divisions 35 and
43 with the points where the creases you just made
hit the side edges.

18. Make a crease that runs horizontally through
the middle of the “X” formed by the creases.

19. Add five creases above and five below the crease
you just made, all going through intersections of
the grid.

20. Add two more short creases above and below
the hexagonal grid; also make two horizontal creases
at the top of the model.

780 35 43
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21. If you have been drawing the reference lines
rather than folding them, now is the time to start
folding. Pleat the top of the paper on the existing
creases.

22. Form mountain folds where indicated.

23. Form valley folds where indicated. 24. Make all the pleats together on the creases shown
and flatten the paper completely.

780 25 53
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25. Fold the bottom edge of the left and right
sides upward so that it runs straight across.

26. Fold the top edge down to the indicated
points; crease all the way across and unfold. Turn
the paper over.

27. Fold and unfold through all layers. Turn the
paper back over.

28. Fold and unfold.
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29. Fold and unfold. 30. Fold the corners to the existing creases. Note
that the creases go underneath the pleats at their
upper ends.

31. Mountain-fold the corners behind on the
existing creases.

32. Bring all corners together at the bottom of
the model.

33. Reverse-fold two edges
in to the center line.

34. Fold two corners inward so that
their edges align with existing folded
edges.

35. Fold one layer to the right.
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36. Fold one corner in to the
center line and unfold.

37. Sink the corner. 38. Fold the layer back to the left.

39. Repeat steps 35–38 on the right. 40. Fold two flaps up. 41. Squash-fold two edges, swinging
the two flaps upward like a petal fold.

42. Fold two corners
in to the center.

43. Fold two flaps
back down.

44. Mountain-fold the top pair
of flaps out to the sides.
Valley-fold the bottom pair.
You shouldn’t make either
fold sharp because you will
adjust these folds later.

45. Turn the model over
from side to side.

35–38
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46. Pleat the shell and curve it
around. The mountain folds are
vertical; the valley folds are
made so that the mountain folds
line up with the existing edges.

47. Pleat the head (top)
and tail (bottom); note that
the upper pleat extends
farther into the shell.
Mountain-fold the sides
underneath. 48. Valley-fold all the way

around the bottom of the
shell to create a rim (and
also further lock the pleats
made in step 46).

49. Mountain-fold the
edges of the head and
tail through all layers.

50. Pinch and
narrow the tail.

51. Steps 52–74 will
focus on the legs and feet,
starting with the forelegs.
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52. Detail of foreleg. Fold and
unfold.

53. Reverse-fold the point. Then
turn the model over.

54. Open out the point, making a
pleat along the folded edge.

57. Valley fold the near
layer and mountain-fold
the far layer.

56. Fold and unfold
along the angle
bisector.

55. Fold and unfold
along the edge behind
the flap.

58. Form a mountain fold
that runs to the corner and
open out the white layer.
The paper will not lie flat.

59. Turn the paper over.
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66. Detail of hind foot. Fold
and unfold.

67. Squash-fold the flap,
opening out the pleat.

60. Form valley folds
betweeen the existing
mountain creases and pleat
the corners all together. Then
turn the paper back over.

61. Squash-fold the extra
paper over to the right and
flatten.

62. Reverse-fold three
corners.

63. Valley-fold the corner. 64. Spread the toes;
simultaneously sink the edge
of the “heel.” The paper will
lie almost flat, except for the
pleats forming the toes, which
will be vertical.

65. Finished front foot.

68. Close up the flap.
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69. Fold and unfold along
the angle bisector.

70. Mountain-fold the near
layer behind; valley-fold the
far layer.

71. Crimp the white layers
downward.

72. Reverse-fold four edges
upward so that they stand
above the white edges.

73. Reverse-fold the edges
to lie flush with all the other
edges.

74. Finished hind foot.
Repeat steps 52–73 on the
other two feet.

75. Pleat the hind legs and spread the
toes. Crimp and curve the forelegs.
Pull out the middle edges of the head
and make it three-dimensional.

76. Finished Western Pond Turtle.
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Koi

1. Begin with a square, white side up.
Fold and unfold along the diagonals,
but on the downward diagonal, only
make the crease sharp about 1/3 of
the way in from each corner.

2. Fold the left side over to the right,
making pinches along the top and
bottom edges.

3. Fold the top left corner over to the
pinch you just made; pinch along the
top edge and unfold. Repeat with the
bottom right corner.
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4. Fold the top left corner over along
a crease connecting the pinch you
just made with the bottom left corner;
make a pinch where it crosses the
diagonal and unfold. Repeat with the
bottom right corner.

5. Fold the bottom edge up along a
horizontal fold that passes through a
crease intersection; make the crease
sharp only from the right edge about
half of the way across, then unfold.
Repeat with the left edge.

6. Fold the right edge over along a
crease that passes through the crease
intersection and unfold. Repeat with
the top edge. Turn the paper over.

7. Fold up a bit of the lower right
corner. The corner goes halfway to
the imaginary crease intersection
shown, but the exact amount isn’t
critical.

8. Fold the corner up along the
diagonal. The fold hits the bottom
edge at an existing crease.

9. Turn the paper over and rotate so
that it is symmetric with a corner
pointing down.

10. Fold a rabbit ear with the lower
two edges using existing creases.

11. Reverse-fold the side
corners and fold the
edges down inside.

12. Fold the corner at the
bottom from side to side.
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13. Fold and unfold along
two angle bisectors.

14. Fold and unfold along a
crease that passes through the
crease intersection.

15. Crimp the corner on the
two existing creases.

16. Fold the side flaps down
and up.

17. Fold the side corners up,
crease, and unfold.

18. Lightly crease the bottom
point up and down. Try not to
make any crease mark on the
far side.

19. Fold through all layers;
only make the crease sharp
between the two dots.

20. Fold and unfold all the
way up along a crease aligned
with the folded edge; unfold
to step 19.

21. Swing the crimped
flap to the left.

22. Repeat steps
19–20 on the right.

23. Turn the model over. 24. Fold the side corners in to
lie along the crease line.

19–20
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25. Swivel-fold the
corners upward while
folding the sides in.

26. Fold the sides
underneath on the existing
creases, allowing the near
flaps to swing outward.

27. Fold the model in half,
incorporating a reverse fold at the
bottom and keeping the top gently
rounded. Rotate the model 1/2 turn.

1/2

28. Fold two corners up as
far as possible.

29. Crimp the tail upward. 30. Mountain-fold the white
corner. Repeat behind.

31. Crimp the head down,
keeping it and the body rounded
and three-dimensional.

32. Mountain-fold the corners
just to the right of the fins.
Pleat the edge of the nose,
pinching at the corners.

33. Reverse-fold the tips of
the fins.

34. Pleat the face. As you do
so, make a small circular
dimple at the top of the pleat
to form an eye. Repeat behind.

35. Pleat the fins and fold
them up and out to the sides.
Curve the tail slightly.

36. Finished Koi.
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8
hile there are many different approaches 
to origami design, the ones that I’ve 
shown thus far can be arranged in a rough 
hierarchy of complexity. We started with 
some simple structures—the traditional 

bases. Then, we modified these bases by various distortions—
offsetting the crease pattern from the center of the square or 
distorting the entire pattern. Both types of modification leave 
the number of flaps unchanged; they only alter the lengths and 
widths of the flaps.

Then we increased the number of flaps by subdividing 
some flaps into smaller flaps using the various point-splitting 
techniques. While in principle any number of flaps can be at-
tained, point-splitting is inherently a process of reduction; 
the flaps you end up with are always smaller than what you 
started with. Thus, there are definite limits on what you can 
accomplish by point-splitting.

We can escape those limitations by using grafting, by ef-
fectively adding paper to an existing crease pattern in such a 
way that the paper remains square after the graft. Grafting 
allows you to add features to an origami base without taking 
anything away from features that are already present. The 
simplest grafts are border grafts, which consist of adding paper 
around one or more edges of the square, but this method, too, 
has its limits. You can only add paper—and thus features—to 
flaps that are made from a raw edge, i.e., corner and edge flaps. 
Another limitation is that when you are border grafting, edge 
flaps don’t offer quite the same freedom of point creation that 
corner flaps did; a border graft that can create four points at 
a corner flap only creates two points of the same size at an 
edge flap.

Tiling
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Yet more variety in added features comes when we  
realize that the existing crease patterns are not indivisible; 
we can cut them up and insert strip grafts throughout their 
structure. Strip grafts create points and flaps along edges just 
as border grafts do, but they also create extra points in the 
interior of the paper without diminishing the size of adjacent 
flaps. As an expansion of strip grafts, we can graft in pleats 
to create extra edges running across a face, and weave cross-
ing groups of pleats to create scales, bristles, and other tex-
tural elements. Although they all start with an existing crease  
pattern, strip and pleat grafts are much more versatile than 
point-splitting and border grafts and come in many more varia-
tions. Strip and pleat grafting possess this great versatility 
because they are based on dissected crease patterns, and there 
are usually many different ways to dissect a given pattern.

Once we’ve taken the step to incorporate grafting into 
dissected crease patterns, an enormously richer variety of ori-
gami structures becomes accessible. When grafting in strips of 
paper, we can vary the width, length, direction, and location 
of the strips; we can insert multiple strips; and we can create 
branching networks of strips, all to place additional points and/
or textural elements into the basic design.

In the models to which we’ve applied grafting—the Song-
bird, the Lizard, the Turtle—our grafts have taken the form of 
fairly narrow strips. These are still relatively small perturbations 
to a preexisting model. The precursor to the songbird was still a 
bird; the lizard with toes began life as a lizard without toes; and 
the turtle with a patterned shell was still recognizably a turtle 
when its shell was smooth. But grafts can be made much larger 
and more complex and can be used to create new bases so dif-
ferent from their predecessors that they hardly seem related at 
all. We will expand our palette of design techniques by exploring 
further the concept of dissection and reassembly. Thus far, we 
have treated bases and grafts as two distinctly different types of 
objects; we start with a base, then we add a graft. In this chapter 
we will learn to decompose both bases and grafts into the same 
underlying structures, which can be reassembled in an infinite 
variety of ways. We will also learn to distill origami bases down 
to simple stick figures; we will then use these stick figures as 
tools for the design of new bases.

8.1. Uniaxial Bases
Let’s look at several of the bases that I’ve shown so far. First, 
we have the Classic Bases: Kite, Fish, Bird and Frog Bases; 
to these, we add two new bases, those used for the Lizard and 
the Turtle. All six are shown in Figure 8.1.
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Figure 8.1. 
Six bases. Top: crease patterns. 
Middle: bases. 
Bottom: representative models.
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All six of these bases share two properties: First, all 
flaps either lie along or straddle a single vertical line; second: 
the hinge at the base of any flap (i.e., the line between two  
adjacent flaps) is perpendicular to this line. When several flaps 
lie along a line, that line is called an axis of the base. Any base 
that possesses a single axis along which all flaps lie is called 
a uniaxial base. The six bases of Figure 8.1 are all uniaxial; 
their axes are shown by dashed lines in Figure 8.2. Every flap 
in each base lies along the base’s unique axis.

Figure 8.2. 
The axes of six uniaxial bases.

Uniaxial bases are very common in origami, and they have 
several properties that make them relatively easy to construct, 
dissect, graft, and manipulate. We will study them intently for 
the next several chapters.

Not all origami bases are uniaxial, however, and before 
casting aside all other origami bases, it’s worth taking a few 
moments to look at some exceptions.

Among the traditional bases, the Windmill Base is not 
uniaxial because its four flaps do not lie along a single line; 
instead, it has two crossed axes, and the hinge creases are not 
perpendicular to the axis.

A base of a more recent vintage—John Montroll’s Dog 
Base, variations of which he has used for a score of diverse 
figures—is also not a uniaxial base, having two distinct par-
allel axes. Montroll’s base is remarkable for its efficiency in 
use of paper (and for my money, stands as the most elegant 
base in all of origami). So while uniaxial bases will prove to be  
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remarkably versatile, they are not the magic solution for all 
origami problems.

Montroll’s Dog Base, in particular, highlights a limitation 
of uniaxial bases; for a given model, they may not provide the 
most efficient structure. However, uniaxial bases are read-
ily constructed and quite versatile, and we will explore them 
thoroughly.

It should also be noted that whether or not a base is uniaxi-
al may depend on the orientation of the base. In the six example 
bases I’ve shown, the axis lies along a line of mirror symmetry. 
This is usually, but not always, the case. For example, in the 
Waterbomb Base, if we attempt to draw the axis along the line 

Figure 8.3. 
Two bases that are not uniaxial. 
Left: the Windmill Base has two 
crossed axes. 
Right: Montroll’s Dog Base has 
two parallel axes.

Figure 8.4. 
Top: crease pattern for the 
Waterbomb Base. 
Lower left: the Waterbomb  
Base is not uniaxial with respect 
to an axis along the symmetry 
line. 
Lower right: it is, however, 
uniaxial if we draw the axis 
along the raw edges of the base.
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of symmetry, we find that the raw edges of the flaps don’t lie 
along the axis and the hinges aren’t perpendicular, so it’s not 
a uniaxial base. However, if we rotate the base by 90°, we can 
re-draw the axis along the raw edges, the hinges are perpen-
dicular to the axis, and it is thereby revealed to be a uniaxial 
base in this new orientation, as shown in Figure 8.4.

Uniaxial bases lend themselves to strip grafting because 
the alignment of many folded edges along the axis of an exist-
ing base makes the creases along those edges natural candi-
dates for cutting to insert strip grafts into the crease pattern. 
The creases that lie along the axis in the base form a special 
set; they are called the axial creases in the crease pattern. In 
Figure 8.5 I have colored the axial creases green (whether 
mountain, valley, or unfolded) in the crease patterns for the 
six bases. I have also similarly colored those portions of the 
raw edge of the paper that lie along the axis.

Figure 8.5. 
The axial creases and axial portions of the paper edge in the six uni-
axial base crease patterns.

Axial creases are natural candidates for cutting and insert-
ing strip grafts, in part because in uniaxial bases every flap has 
at least one axial crease (or an axial raw edge) running to its 
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tip. Consequently, we can always split any flap along an axial 
crease to insert a strip graft.

Observe that the network of axial creases divides the crease 
pattern into a collection of distinct polygons whose boundaries 
are entirely composed of either axial creases or the raw edge of 
the paper. We will call these polygons axial polygons.

8.2. Splitting Along Axes
The axial polygons of the crease pattern have an interesting 
property in their own right: in the folded base, the entire pe-
rimeter of each polygon comes together to lie along a common 
line—the axis of the model. You can observe this property by 
taking a base and cutting it along its axis. If you remove a 
slight bit of paper from either side of the axis so that the cut 
severs folded edges that lie along the axis, both the base and 

Figure 8.6. 
Dissected crease patterns for the Fish, Bird, and Frog Bases.
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the crease pattern will fall apart into distinct pieces, as shown 
in Figure 8.6 for the Fish, Bird, and Frog Bases.

One or more strips can be inserted along any of the gaps 
to split or multiply flaps. Let’s look at an example.

1. Cut the square in half along the diagonal. 2. Insert a strip of paper along the cut edges.
The exact width of the strip isn’t critical.

7. Crease pattern.

3. Mountain-fold the
corner underneath.

4. Dent the top of the model
and push the sides together so
that the edges of the strip align.

5. Reverse-fold
the bottom corner.
Repeat behind.

6. Finished
grafted shape.

Figure 8.7. 
Folding sequence and crease 
pattern to form a strip graft 
within a Bird Base.
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Figure 8.7 illustrates the process of inserting a strip into 
the middle of a Bird Base. We cut the base down the middle, 
then insert a strip into the gap. The resulting shape has paired 
points at the middle of the top and bottom where the original 
base had only single points.

Now, let’s look at what we’ve accomplished. The Bird Base 
that we started from had five flaps: four long ones pointing down 
and one short one pointing upward. Two of the long flaps at the 
bottom and the shorter flap at the top have now been split into 
a pair partway along their length. This is not entirely obvious 
from the final step in Figure 8.7, but if we rotate the layers so 
that the inserted strip stands out from the rest of the base, the 
gap becomes visible as shown in Figure 8.8.

Figure 8.8. 
Strip-grafted Bird Base with 
flaps oriented so that the gap 
is visible.

The interesting thing here is that after the inserted strip, 
we still have a uniaxial base. And it is instructive to highlight 
the axial creases of the new base and axial raw edges, as I’ve 
done in Figure 8.9.

Figure 8.9. 
Left: the crease pattern of the original Bird Base. Axial creases are 
shown in green. 
Right: the crease pattern of the strip-grafted version.
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Note that in the process of adding a vertical strip, we also 
created new horizontal axial creases. The Bird Base was com-
posed of four axial polygons, which are four identical triangles. 
But our inserted strip graft is similarly composed of polygons 
whose boundaries are axial creases (or the raw edge of the 
paper): In addition to the four triangles of the Bird Base, we 
have added two rectangles and two triangles.

We can now view grafts in a new light. While we have previ-
ously distinguished between the original base and the strip or 
border graft that we’ve added to the pattern, they are really not 
so different. Both the base and the graft are composed of the same 
fundamental elements, which are the axial polygons. The cre-
ation of a graft simply divides the initial crease pattern—itself 
a collection of axial polygons—along its axial folds, then inserts 
additional axial polygons into the opening as the graft.

This unification allows us to approach design in a new 
way. In the past, we have almost always started with a base 
and then wrought variations upon it. But since bases are all 
composed of axial polygons, we can dispense with the idea of 
starting from a base and adding grafts; instead, we can actually 
build a base from scratch—maybe grafted, maybe not—simply 
by assembling axial polygons into a crease pattern. If we think 
of each axial polygon as a tile of creases, then the problem of 
design becomes a problem in fitting tiles together in such a way 
that we obtain all the desired flaps in our base, and the tiles 
fit together to make a square.

8.3. Tiles of Creases
We have already encountered several possible tiles in the Clas-
sic Bases and the grafted variants seen so far. Let’s enumerate 
them.

Figure 8.10. 
Crease pattern and folded form for three orientations of the triangular 
tile that makes up the Classic Bases.

(a) (b) (c)
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First of all, there is the triangular tile that makes up the 
four Classic Bases. It comes in three distinct forms, depending 
on the orientation of the flaps (see Figure 8.10).

These three forms are only distinguished from one  
another by the location of the mountain fold in the crease  
pattern and the positions of the flaps in the folded form. In 
the crease pattern within each triangle there are four folds—
one mountain fold and three valley folds—extending from the 
crease intersection to the corners and edges. Note that in all 
three cases, all edges of the triangle lie along a single line; the 
polygonal tile is uniaxial.

The Lizard and Turtle bases are also composed of triangles, 
but different ones: an isosceles triangle from the Lizard, and an 
equilateral triangle from the Turtle, as shown in Figure 8.11. 
These, too, are uniaxial.

Figure 8.11. 
Left: the triangle tile from the Lizard base, crease pattern and folded 
form. 
Right: the equilateral triangle tile from the Turtle base.

Every such triangular tile has three possible folded forms, 
just like the isosceles right triangle tile shown in Figure 8.10. 
The creases within each tile are the three angle bisectors from 
each corner (which always meet at a common point) as valley 
folds, and a mountain fold that extends from the intersection 
point perpendicularly to one of the three edges. Since there are 
three edges, there are three possible choices for the mountain 
fold. When we enumerate tiles, it’s not necessary to show all 
three forms for every triangle; you should keep in mind that 
for any triangle, all three flap arrangements are possible. The 
three tiles shown here are not the only possible triangular tiles, 
either. In fact, it can be shown that every triangle can be turned 
into such a tile by constructing the three angle bisectors as 
valley folds and dropping a perpendicular mountain fold from 
their intersection to an adjacent edge.

Are the only such tiles triangles? Clearly not; look again 
at the grafted crease pattern in Figure 8.9. The strip graft is 
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composed of rectangles and triangles. The triangles are famil-
iar; the rectangles are new. Rectangles, too, can be used as tiles 
from which crease patterns may be assembled. Figure 8.12 
shows the rectangular tile from the strip graft; it, too, can be 
folded so that its perimeter lies along a common line. Thus, a 
rectangle can also serve as an axial polygon.

Just as we saw that creases can be constructed inside of 
any triangle to make an axial polygon, so too can creases be 
constructed within any rectangle, no matter what its aspect 
ratio. Figure 8.12 shows creases for three different aspect 
ratios, including the limiting case of a square—which gives 
rise to the uniaxial orientation of the Waterbomb Base as its 
folded form.

As we saw for the triangle, it is possible to orient the flaps 
of a tile in several different ways. Figure 8.13 shows several 

Figure 8.12. 
(a) The rectangle tile from the strip graft. 
(b) A wider rectangle. 
(c) The limiting case of an equilateral rectangle, i.e., a square.

(a) (b) (c)

Figure 8.13. 
Three different crease patterns and arrangements of flaps for a 
rectangular tile.
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possible orientations for the flaps for one of the rectangular 
tiles. The variation arises in the creases that run perpendicular 
to an edge. We can recognize and treat the essential similar-
ity among all such variations by simply drawing the tiles in a 
generic form, with undifferentiated creases perpendicular to 
all edges as in Figure 8.14. When the tiles are assembled into 
full crease patterns, some of those creases will get turned into 
mountain and/or valley folds, but we can—and will—defer that 
assignment until a later time.

Are there more possible tiles than these? Uncountably 
more, as it turns out. In addition to triangles and rectangles 
there are tiles from pentagons, hexagons, and octagons, both 
regular and irregular. In later chapters, we will learn how to 
construct new special-purpose tiles from arbitrary shapes; but 
even these few shapes—triangles and rectangles—allow one to 
construct new, custom-tailored bases.

8.4. Tile Assembly
Now, if a base can be constructed from tiles, we need some rules 
for their assembly. Tile assembly is not as easy as it might seem, 
because each tile contributes to several different flaps. When 
one is designing a figure, one naturally thinks in terms of flaps, 
and it would be very simple if any given tile corresponded to 
a single flap; but instead, each tile contains pieces of several 
flaps. So, when we assemble tiles, we need to make sure that 
they go together in such a way as to create entire flaps—in the 
right sizes, and with the right connections.

Since these tiles are axial polygons, their boundaries are 
all axial, and so when two tiles meet, they must join along an 
axial fold. So the first rule of assembly is simple: tiles mate along 
their edges, and the result of the join is an axial fold. However, 
there is more to consider: there are folds incident upon the edges 
of each tile at right angles, and in order for the joined pair to 
fold flat, these folds must meet up with one another.

Keeping track of the correspondence between tiles and 
flaps is aided by decorating the tiles with circular arcs as shown 
in Figure 8.15 for triangular, rectangular, and square tiles.

Figure 8.14. 
Generic form of the rectangular 
tile and one possible arrangement 
of flaps.
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Figure 8.15. 
Four generic form tiles decorated with circular arcs and representative 
folded forms.

Figure 8.16. 
Mating two tiles so that the 
circles align insures that the 
folded forms align as well.

+ =

+ =
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Compare the four tile crease patterns with the folded form 
of each tile. Each circular arc defines a region of paper that 
belongs to a single flap.

The value of the circles is that when two tiles mate so 
that the circles line up, then the folded forms of each tile also 
mate so that the boundaries of adjacent flaps line up with each 
other. An example is shown in Figure 8.16. Since the boundary 
of each tile is axial, the seam between the two tiles must also 
be axial, and so I have colored the crease at the joint green to 
indicate its axial character.

In Figure 8.16, each triangular tile contains two long flaps 
and one short flap. If we mate the two triangles along their long 
edges, the long flaps merge, top and bottom, into two long flaps; 
but the two side flaps remain separate, so that the resulting 
crease pattern contains two long flaps and two short flaps: a 
Fish Base.

Alternatively, as shown in Figure 8.17, by mating the two 
tiles along their short edges, instead of long flaps merging, one 
long and one short flap merge, and the resulting base has three 
long flaps and one short flap (and its crease pattern is a right 
triangle, rather than a square).

Observe that in each mating, distinct segments of circles 
correspond to distinct flaps. Thus, a simple way of determining 
the number of flaps created by the crease pattern is to count the 
number of distinct portions of circles in the crease pattern.

Figure 8.17. 
The same two tiles can be mated along their short edges to create a 
different configuration of flaps.

+ =

+ =
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At this point, you might wish to explore fitting together 
tiles in different ways and examining the resulting crease pat-
terns (and for a challenge, try folding the corresponding bases). 
The circles serve two purposes. First, they create matching 
rules that enforce foldability of the resulting crease patterns. If 
you match up two tiles with misaligned circles, you will not, in 
general, be able to collapse the crease pattern without adding 
new creases. For example, the right triangle tile and the Lizard 
tile cannot be mated because the circles don’t line up. If you 
try to fold the shape in Figure 8.18, you cannot form either of 
the two creases incident perpendicularly upon the mating line 
without adding new creases inside the other tile.

Therefore it is absolutely necessary that all circles line up 
with the circles of mating tiles along tile boundaries. This is a 
substantial restriction on the ways that tiles can be assembled 
into crease patterns.

On the other hand, however, there is often more than one 
way that the circles can be drawn within a given tile. Let’s 
look at the rectangular tile. It differs from the triangular and 
Waterbomb tiles in two ways: 

• A gap in the middle of the crease pattern sepa-
rates the upper pair of circles from the lower pair of 
circles.

• A segment in the folded form separates the upper 
pair of flaps from the lower pair of flaps.

Figure 8.19. 
Left: crease pattern for the 
rectangular tile. 
Right: folded form of the tile.

gap

misalignment

Figure 8.18. 
Two tiles cannot be mated if 
their circles do not line up.
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It is clear from examination of the crease pattern and the 
folded form that the paper in the gap in the crease pattern 
gives rise to the paper separating the two pairs of points in 
the folded form. This paper is, in its own way, a kind of flap as 
well; but it’s not a loose, isolated flap; it’s a flap that connects 
other flaps. We can allow for such a feature in a crease pattern 
(and model) by inserting a stripe into the crease pattern that 
cuts across the rectangle, as shown in Figure 8.20.

Figure 8.20. 
The completed rectangular tile 
contains a river running across 
its middle.

river

Figure 8.21. 
Both a rectangle and a triangle 
can be folded into a shape with 
a body separating one or more 
flaps.

body

We will give this stripe that separates groups of circles 
a special name: we will call it a river, for a reason that will 
shortly become apparent.

What about triangular tiles? Are there analogous struc-
tures?

The rectangular tiles give rise to two pairs of flaps sepa-
rated by segments—like the body between the front and hind 
legs of an animal. We can similarly think of a triangular tile 
as giving rise to a pair of flaps separated from a third flap by 
a body, as shown in Figure 8.21.

We can decorate the triangular tile with its own river cor-
responding to the body, so that the river is distinct from the 
circle representing the flap. It’s not hard to see that while the 
river in the rectangular tile is a rectangle, for the triangular 
flap, the appropriate decoration is a segment of an annulus, 
i.e., a rectangle bent along a circle, as in Figure 8.22.

This division is not unique to the isosceles triangle tile; for 
any corner of any tile, the circle at that flap can be subdivided 
into a circle plus an annular river, thereby allowing it to be mated 
to a rectangular tile or to any other tile similarly divided.
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So, for example, the rectangular tile and two divided isos-
celes triangle tiles can now be mated, one on either side, as 
shown in Figure 8.23. We enforce the mating of the circles on 
both sides, which constrains the aspect ratio of the rectangle 
relative to that of the two triangles.

Figure 8.23. 
Mating of two isosceles triangle 
tiles with a rectangular tile.

We must enforce mating of both the circles and the rivers, 
as shown in Figure 8.23. And now, perhaps, you see the reason 
for the name river: in a large crease pattern, rivers are regions 
of constant width that meander among the circles like a river 
meandering among hills.

Now, before we even try folding this crease pattern, we can 
determine what the resulting shape will be simply by examin-
ing the circles and rivers. There are six distinct segments of 
circles; each circle will create a distinct flap. The four circles 
at the top are separated from the two at the bottom by a river 
running across the pattern; consequently, the folded shape 
should have six flaps, with four at one end separated from two 
at the other by a body.

And indeed, if we fold this crease pattern, assigning crease 
directions as shown in Figure 8.24, that is exactly the shape 
we obtain.

This crease pattern isn’t a square, of course. But we can 
make a square pattern by packing these tiles into a square, as 
shown in Figure 8.25. There are two possible orientations; the 

body

river

Figure 8.22. 
A body can be inserted into a triangular tile by representing it as a 
partial annulus.
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axis of symmetry can be oriented along the edge of the square 
or along the diagonal. Packing the tiles in along the diagonal 
is a bit more efficient, but still leaves some unused paper at 
the top and bottom of the square.

No problem: we can simply add more tiles (suitably deco-
rated by circles and/or rivers) to create more flaps and consume 
the rest of the paper in the square, as shown in Figure 8.25.

By enforcing circle matching, we ensure that the crease 
pattern can be folded flat (we will have to add some creases to 
the two sliver triangles along the upper edges and assign crease 
directions to the generic creases). Furthermore, by counting 
circles and rivers, we can elucidate the structure of the resulting 
base before we have even begun to fold. There are five circles 
at the top of the pattern, all touching; these will give rise to 
five flaps. The topmost circle is larger than the other four; that 

Figure 8.24. 
Left: crease pattern. 
Right:  folded form of the 
resulting shape.

Figure 8.25. 
Left: the shape fit into a square. 
Right: add a few more tiles to add more flaps and consume the 
remaining paper in the square.

© 2012 by Taylor & Francis Group, LLC



260 Origami Design Secrets, Second Edition

flap will be longer than the others. There are two circles at the 
bottom, separated by a river that runs across the pattern. Those 
two circles will give rise to two more flaps, the same length as 
the upper four, but separated from them by a body; and finally, 
the tiny circle at the very bottom will turn into a small flap, 
joined to the other two that it touches.

And indeed, with suitable crease assignment, this pat-
tern can be folded into the shape shown in Figure 8.26, which 
matches every element of the structural description.

This structure is not just a contrived example; I have used 
it to realize a Pegasus. The folded model and its crease pattern 
is shown in Figure 8.27. Folding instructions are given at the 
end of the chapter.

If you compare the crease patterns in Figures 8.26 and 8.27, 
you will see that although the overall structure is the same, 
the second crease pattern has many more creases within the 
individual tiles. It is useful, in fact, to examine the various tiles 
because they are illustrative of some of the variations you can 
find within tiles.

First, let’s look at the rectangular tile that forms the body 
and four legs of the animal. The two forms—the basic crease 
pattern, and the form in the folded model—are shown in Fig-
ure 8.28.

In the two tile crease patterns, the circles and rivers have 
the same radii and width, respectively, and the flaps have the 
same lengths in the folded forms. The only difference lies in 
the widths of the folded flaps and the number of layers in each 
flap. The narrower flaps necessarily have more layers.

Figure 8.26. 
Left :  the f inished crease 
pattern. 
Right: the folded base.
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Figure 8.27. 
Crease pattern, base, and folded model of the Pegasus.

Figure 8.28. 
Left: the basic rectangle tile. 
Right: the tile with additional creases.

Figure 8.29. 
Left: the basic isosceles triangle 
tile crease pattern. 
Right: the same tile with 
additional creases.

Similarly, the triangular tiles also have somewhat more 
complex crease patterns than we saw previously.
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Figure 8.30. 
Left: crease pattern with axial polygons outlined and circles and 
rivers drawn. 
Right: base for the Lizard with axis superimposed.

Figure 8.31. 
Left: Lizard crease pattern with tile outlines, circles, and rivers. 
Middle: base. 
Right: finished Lizard.
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If you fold these two patterns, you will see that the differ-
ence again lies in the width of the flap and the number of layers, 
rather than the length or connectivity of the flaps.

As a third example, recall that the Lizard base came in 
two forms: one with wide flaps, one with narrow flaps. First, 
let’s look at the wide-flap (simpler) version of the crease pattern 
and base. I have colored the outlines of the axial polygons and 
have drawn in the circles and river on the tiles.

Observe that the river is meandering through the pattern 
in a way that illustrates its name.

Now, look at the actual crease pattern for the Lizard and 
its base. I have used the same outlines for the axial polygons.

The narrow form of the Lizard base uses the same tile 
outlines, circles, and rivers, but there are many more creases 
within each tile.

8.5. A Multiplicity of Tiles
Do we need to keep track of all possible crease patterns for 
every possible tile? Fortunately not. The more complicated 
crease patterns can often be derived from simpler patterns 
by narrowing the flaps of the folded form of the tile in one of  
several different ways. The most common techniques for  
narrowing take the form of sink folds (which accounts, in part, 
for the prevalence of sink folds in complex origami designs). 
A simple tile with wide flaps can have its flaps narrowed by 
sinking one or more times. This sinking can give a much more 
complex crease pattern, but it should not distract you from 
understanding the essential simplicity of the underlying tile.

Figure 8.32. 
Procedure to narrow a tile using angled sink folds.

1. Open-sink the
two flaps along
their angle
bisectors.

2. Open-sink the
remaining edge.

3. Narrowed folded tile
and its crease pattern.

Simple tile crease
pattern
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For example, let’s take the isosceles triangle tile. There 
are several ways of narrowing the flaps. Two of the more  
common are shown in Figures 8.32 and 8.33. One keeps the 
flaps triangular while making them more acute; the other turns 
them into quadrilaterals.

Figure 8.34. 
The narrowed isosceles tile 
with all axial creases colored 
green. It can be considered to 
be composed of three triangular 
tiles and their circles.

Which of the two you use is primarily a matter of taste. 
The sequence in Figure 8.32 gives flaps that taper evenly, but 
it is difficult to form the closely spaced creases as they converge 
on the tip of the flap. The sequence in Figure 8.33 distributes 
the layers more evenly but doesn’t taper smoothly to its tip. 
And there are many more possibilities than these: You can 
sink some flaps and not others, and perform double, triple, 
and more complex sinks. The important thing is, this narrow-
ing can be performed after the base is folded, so you can do all 
your design using the simplest possible tiles, then go back and 
narrow them if desired.

You might have noticed that when we narrow a tile as in 
Figures 8.32 and 8.33, some of the creases created within the 
tiles end up lying along the axis in the folded form; that is, they 
are also axial creases. For example, the isosceles triangle tile 
narrowed with angular sinks has several new creases that lie 
along the axis in the folded form, as shown in Figure 8.34.

1. Open-sink the
side corner of the
folded shape.

2. Narrowed folded tile
and its crease pattern.

Simple tile crease
pattern

Figure 8.33. 
Procedure to narrow a tile using 
sink folds parallel to the axis of 
the folded tile.
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This example illustrates that a tile can sometimes be sub-
divided into smaller tiles; the isosceles triangle tile in Figure 
8.34 can be decomposed into three more triangle tiles, each with 
three circular arcs; and as the figure shows, the point where 
the three tiles come together can give rise to a tiny fourth flap. 
If you fold an example and carefully examine the folded form, 
you will find that fourth flap buried within the layers in the 
interior of the shape.

Rectangular tiles can also be narrowed. A long, skinny 
rectangular tile can be narrowed with angled sinks as shown 
in Figure 8.35.

Figure 8.35. 
A simple rectangular tile, 
narrowed with sinks, becomes 
a more complex tile.

Figure 8.36. 
Left: simple tile for a silver 
rectangle. 
Right: narrowed form of the 
same tile.

As with the narrowed triangle tile, some of the creases in 
the narrowed tile will lie along the axis of the folded form. But 
rather than dissecting the tile into smaller tiles, it’s better to 
think of this one as a simple tile with a few extra creases.

In a rectangle of high aspect ratio, the two angled sinks don’t 
interact. But if the rectangle is shortened relative to its length, 
the sink folds connect and introduce some new horizontal creases. 
For the so-called silver rectangle, whose width-to-length ratio is 
1 × √2 (this is the same proportion as European A4 letter paper, 
210 × 297 mm), the narrowed form of the tile has a particularly 
elegant crease pattern, shown in Figure 8.36.

The square, too, has a narrowed form. The simple tile for 
a square is, as we saw, the Waterbomb Base. The narrowed 
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form is—surprise!—the same crease pattern as a Bird Base 
(see Figure 8.37).

So, we could treat this tile as the narrow form of a square 
tile, or we could decompose it into four of the triangular tiles 
that we’ve already seen (in which case, we’d add a fifth circle 
to the center of the square, representing the fifth accessible 
flap).

So, it appears that a given tile can have several different 
crease patterns inside it with the same number and length of 
flaps; only the widths of the flaps differ. The simplest tiles have 
the widest flaps. By sinking the tiles in various ways, we can 
make the flaps narrower; in fact, by sinking over and over, we 
can make each of the flaps arbitrarily thin.

8.6. Stick Figures and Tiles
At this point, it is helpful to introduce a pictorial notation for 
the arrangement of flaps in the folded form of a tile: the stick 
figure. We represent each flap in the folded form by a line seg-
ment whose length is equal to the length of the flap, with line 
segments joined to each other in the same way that the flaps 
are joined to each other.

If two circles touch within the tile, then their corresponding 
flaps touch, and we will represent that connection by drawing 
the sticks as touching at their corresponding end. Thus, for 
example, the folded form of a triangular tile—three flaps—can 
be represented schematically by three lines coming together 
at a point.

Figure 8.38 illustrates this schematic form for two of the 
triangle tiles. A triangular tile can be folded into a shape with 
three flaps; we will represent the tile by a three-branched stick 
figure, in which the sticks are the same length as the flaps in 
the tile.

The stick figure can also be viewed as the limiting case as 
the flaps of the folded form are made narrower and narrower. 

Figure 8.37. 
Left: simple tile for a square. 
Right: narrowed form of the same tile.
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However, there is an important difference between the stick 
figure and the base. Although we often draw the branches of 
the stick figure in the same orientation as the flaps of a base 
(as in Figure 8.38), there is no significance to the order of sticks 
around their common endpoint. The flaps of the base may be 
superimposed, one atop the other, but in order to distinguish 
adjacent flaps, I will always draw the stick figure schematic 
with the segments separated by some angle. So in the stick fig-
ure, it is not the angles between segments that are significant; 
only the lengths of the segments and their connections to each 
other matter, because the length of each segment indicates 
the length of the corresponding flap. This length is also equal 
to the radius of the inscribed circular arc for flaps represented 
by circles.

For a tile with a river running through it, we will represent 
both the flaps and the connection between them by lines as well. 
Thus, a rectangular tile with a river is represented schematically 
by four lines joined in pairs with a connection between the pairs, 
while a square tile composed of four circles would be represented 
by four lines all coming together at a point.

Figure 8.38. 
Schematic representation of two triangular tiles. The length of each 
stick is equal to the length of the flap.

Figure 8.39. 
Schematic representation of a rectangular tile with a river and a 
square tile.
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Figure 8.40. 
Crease patterns for six bases with inscribed circles and rivers, bases, 
and corresponding stick figures.
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The stick figure schematic is a useful tool because it doesn’t 
depend on the specifics of the creases within a tile, only upon 
the circles and rivers within the tile. But its utility extends 
beyond individual tiles; we can also use the stick figure to  
represent the structure of an entire base.

We can use the stick figure to sketch the structure of  
entire crease patterns by treating the entire pattern as one large 
collection of circles and rivers, using a few simple rules: 

• Each circle is represented by a line segment whose 
length is the radius of the circle. One endpoint of the 
segment corresponds to the center of the circle; the 
other corresponds to the boundary of the circle.

• Each river is represented by a line segment whose 
length is the width of the river. One endpoint of the 
segment corresponds to one bank of the river; the 
other corresponds to the other bank of the river.

• If two features (circles or rivers) touch anywhere, 
their corresponding lines are connected at correspond-
ing endpoints.

To see how this works, let’s construct the stick figures for 
the six bases we’ve been working with in this section.

The circle/river patterns within the crease patterns of the 
four Classic Bases consist only of circles, and so their stick figures 
consist only of lines emanating from a common point. Thus, in 
the folded bases, all of the flaps emanate from a common location. 
The Lizard base (fifth in the row) is a bit different, however; its 
circle pattern contains a river. The river gives rise to a segment 
that separates the two groups of points in the base.

Thus, the stick figure serves as a quick, shorthand de-
scription of both the lengths of the flaps and the way they are 
connected to each other. You can design a crease pattern using 
just tiles with circles and rivers, and by drawing the stick figure, 
quickly ascertain whether the pattern gives rise to the neces-
sary combination of flaps. Only after you’ve found a tile pattern 
that gives the right number of flaps with suitable lengths do 
you need to fill in the tiles with crease patterns.

Let’s look at an example. A square can be dissected into 
two rectangles plus two dissimilar squares, as shown in Fig-
ure 8.41. What would be the properties of a base constructed 
from these four tiles?

If we plug in four tiles—two squares containing four circles, 
plus two rectangles containing four circles and two rivers, we 
see that the circles in the upper square mate properly with the 
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short sides of the rectangles, but the ones in the larger square 
don’t mate properly with the circles and river in the rectangle. 
We can fix that. Recall that any circle can be subdivided into a 
smaller circle and an annular river; similarly, the river in each 
rectangle can be bisected into two rivers to mate with the newly 
created rivers. The result is a pattern of circles and rivers in 
which all matching conditions are satisfied along the edges of 
the tiles, as shown in Figure 8.42.

And now, without adding any more creases, we can identify 
the number of flaps in the base folded from this structure. In 

Figure 8.42. 
Tiles with circles and rivers 
that satisfy matching conditions 
across tile boundaries.

Figure 8.41. 
Two rectangular tiles plus two 
square tiles fit together to make 
a square.
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the crease pattern, we label each circle and river with a letter 
from a to l, as in Figure 8.43.

The four circles a–d at the top are four equal-length flaps. 
Since a touches b and c, its corresponding line must be joined 
to lines b and c at the same point. Since b and c also touch 
circle d, that means line segment d must also be connected at 
the same point as well.

There is a subtlety here I don’t want to speed by; even 
though circle d doesn’t touch circle a, since d touches b and b 

Figure 8.43. 
Left: the circle/river pattern 
with all features labeled. 
Right: the schematic stick figure, 
illustrating the lengths and 
connections among flaps.

Figure 8.44. 
Left: the crease pattern filled with simple tiles. 
Right: the same pattern filled with narrow tiles.
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Figure 8.45. 
Folded form of the base with 
narrowed tiles.

1. Begin with the white side up.
Fold and unfold along both
diagonals.

2. Fold the top edges down along
the diagonal and unfold.

3. Fold the top edges down along a
crease that hits the intersection of
the edge and the crease you just
made.

4. The creases you just made form
the boundaries of the tiles.

Figure 8.46. 
Folding sequence to divide the square into square and rectangular tiles.

d

c

g

k

hl

i j

a

b

e

f
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touches a, the two corresponding flaps are connected at their 
base. The way you can keep this straight is to use the rule that 
two segments are connected at a point if in the circle pattern, 
you can travel from one to the other without cutting across a 
circle or river.

Continuing downward, flaps a–d are connected to a short 
segment (e), which, in turn, is connected to two more short seg-
ments (f and g) and a longer point, l. Both f and g are terminated 
in pairs of flaps—h and i, and j and k, respectively.

So this base will have eight longish flaps, two paired along 
a segment, and a single flap longer than any of them. Now, if 
this base meets the needs of the desired subject, we can fill it 
in with tile creases, as shown in Figure 8.44 with simple and 
narrowed tiles.

And if we fold either pattern into a base, we will obtain a 
base with the same number, length, and configuration of flaps 
as is predicted by the circle pattern.

You might enjoy folding the base for yourself and seeing if 
you can identify the flaps. The folding sequence in Figure 8.46 
gives the appropriate proportions for the division into squares 
and rectangles; from there, the other folds can be constructed 
by bisecting various angles.

I have used a dissection very similar to this for a model 
of Shiva as Nataraja, but using rectangles of proportion 2 × 
(1+√2), rather than the silver rectangle (1 × √2). The crease 

Figure 8.47. 
Crease pattern, base, and folded model of Shiva.
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pattern, base, and folded model are shown in Figure 8.47. Can 
you identify the individual tiles?

The same base may be used in several different orienta-
tions to create distinctly different models; it is often not at all 

Figure 8.48. 
Crease pattern, base, and folded model of the Hercules Beetle.

Figure 8.49. 
Crease pattern, base, and folded model of the Praying Mantis.
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obvious from the folded form that the underlying base is the 
same. But if you examine the pattern of flaps—where are the 
long flaps, where are the short, how are they joined—you can 
perceive the essential similarity. The same structural base as 
was used in Shiva can also be used to realize a Hercules Beetle, 
as shown in Figure 8.48.

One can also combine techniques: construct a base by 
tiling, then split one or more flaps using point-splitting. The 
Praying Mantis shown in Figure 8.49 employs nearly the same 
base as the Hercules Beetle, but splits the middle flap into four 
points to form antennae.

8.7. Dimensional Relationships Within Tiles
In any tile, every circle or river encounters two sides of the 
tile; this establishes a relationship between the two sides. The 
union of all such relationships can constrain the possible sizes 
of circles and rivers within the tile. In a triangle tile composed 
of three circles, it is clear from Figure 8.50 that each side of the 
triangle has a length equal to the sum of the radii of the two 
adjacent circles (which, you recall, are equal to the lengths of 
their associated flaps).

Figure 8.50. 
A triangle tile composed of three 
different circles.

a

a b

b

cc

X

YZ

It is clear from the figure that if the sides of the triangle 
are X, Y, and Z and we are starting from flaps of length a, b, 
and c, then

(8–1)
 

                                    (8–2)
 

                                   (8–3)
 
We can also invert the relationship to find the lengths of 

flaps that can be obtained from a given triangle: 

X = a + b,

Y = b + c,

Z = a + c.
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Consequently, for a given rectangle, the dimensions of the 
circles and river are simply

                                  (8–9)

b = X – Y.                               (8–10) 

For rectangles or triangles to which we have added rivers, 
the radius of the circle is quite obviously reduced by the width 
of the added river.

These relationships can be used to construct com-
binations of tiles that give rise to new bases with new 

Figure 8.51. 
A rectangular tile with a river.

a a

a

a

b

a ab

a

a

X

Y

                          (8–4)

                           (8–5)
 

                            (8–6)
 

In the rectangle tile, because of symmetry, there are fewer 
variables: The circles all have the same radius, as shown in 
Figure 8.51. If the circles have radius a and the river has width 
b, then the sides of the rectangle are given by

X = 2a + b,                                (8–7)

                                    (8–8)

c =
1
2

Y + Z − X( )

c =
1
2

Y + Z − X( )

c =
1
2

Y + Z − X( )

Y = 2a.

.

, 

, 

a =
1
2

Y , 
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Figure 8.52. 
Crease pattern, base, and folded model of the Periodical Cicada with 
a tiled crease pattern.

combinations of flaps beyond those in the standard reper-
toire. While this approach can be used for many origami  
subjects, it is particularly effective with insects, whose many 
appendages, often of varying lengths, have historically  
provided great challenge to the origami designer. By  
building up bases from tiles, it is possible to achieve quite 
complex combinations of long and short flaps. In the  
Periodical Cicada shown in Figure 8.52, six isosceles right 
triangle tiles, four isosceles triangles and four scalene  
triangles come together to produce six legs, two long wings, a 
head, thorax, and abdomen.

8.8. From New Tile to New Base
There are many possible tiles. You can search through the ori-
gami literature and catalog them, then combine existing tiles 
in new ways to realize new bases. Or, you can seek to construct 
new tiles directly. A new type of tile can inspire a new design. 
Squares, rectangles, and triangles are not the only possible 
tiles. It’s possible to construct circles and rivers inside a paral-
lelogram as well, as shown in Figure 8.53.

Like a rectangle, a parallelogram can be stretched arbitrari-
ly; in this tile, stretching along the long direction can be taken 
up by increasing the width of the river running vertically.
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Figure 8.54. 
Tiling of two and four par-
allelogram tiles and their 
schematics.

Also like a rectangle, a parallelogram can be tiled to fill 
the plane. Look at what happens when we stack two of these 
tiles vertically or horizontally. The circles and rivers line  
up, so the combination can fold flat. But the tilt of the paral-
lelograms creates an offset between adjacent points, so that 
the net result is a series of points evenly strung out along a 
common line.

This is quite a nice trick; the circles in the crease pattern 
are arranged in rows and columns, while in the stick figure 
corresponding to the base, the flaps are distributed along a 
single line. Thus, the tile allows us to build an essentially 
one-dimensional chain of flaps while efficiently using a two-
dimensional region of paper. A combination of rectangles and 
parallelograms gives the 14 legs and body segments of a pill 
bug, as shown in Figure 8.55. By varying the length and tilt 
angle of the parallelogram, you can vary the circle radii and 
river width, corresponding to the lengths of the legs and of the 
segments between them.

It’s also possible to add circles and rivers to a trapezoid in 
the same way as a parallelogram. A combination of rectangle, 
parallelogram, and trapezoidal tiles gives a twenty-legged 
centipede, whose crease pattern and folded form is shown in 
Figure 8.56.

Figure 8.53. 
Top left: a parallelogram tile. 
Bottom left: schematic of its 
folded form. 
Right: same for a longer paral-
lelogram.
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Figure 8.55. 
Crease pattern with circles and rivers, base, and folded model of the 
Pill Bug.

Figure 8.56. 
Crease pattern with circles and rivers, base, and folded model of the 
Centipede.
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While any parallelogram can be turned into a circle/river 
tile that covers the plane, only particular proportions and tilt 
angles give evenly spaced legs. You might find it an interesting 
challenge to work out the relationship between parallelogram 
dimensions, leg length, body segment length, and the number 
of rows and columns of parallelograms and trapezoids. After 
you’ve done that, you might try your hand at working out how 
to make multilegged centipedes using only rectangle and tri-
angle tiles.

Whether you use triangles, parallelograms, or trapezoid 
tiles, by using more rows and columns, you can increase the 
number of legs arbitrarily; in fact, it’s possible to make a  
hundred-legged centipede from a square. The use of tiles gives 
a remarkably efficient centipede. The length of the folded model 
is about two-thirds of the side of the square, and surprisingly, 
for a constant ratio between leg length and body segment, the 
length turns out to be about the same no matter how many 
legs it has.

Origami design by tiling can be a powerful technique 
for discovering new bases from which to fold new designs.  
However, there is still a bit of trial-and-error to it, in that 
the way we’ve approached it has been to assemble tiles into a  
pattern and see what kind of base arises. If you have built up 
a collection of many different types of tile, then for a particular 
subject, you can try fitting together different tiles compris-
ing the required number of circles and rivers. But it’s still an 
indirect way of designing a model. The concepts within the 
tiling method, however—circles, rivers, and most importantly, 
the uniaxial base—are fundamental. We can build off these  
concepts to construct several algorithms for a directed design: 
“I need this many flaps; here’s how to get them.” In the next  
chapter, we’ll encounter the first of these algorithms.
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Folding Instructions

Pegasus

© 2012 by Taylor & Francis Group, LLC



282 Origami Design Secrets, Second Edition

Pegasus

1. Begin with the white side up.
Fold the paper in half along the
diagonal and unfold.

2. Fold the edges in to lie
along the diagonal, but don’t
make the creases sharp.

3. Turn the
model over.

4. Fold the bottom
point up to the top;
make a pinch in
the middle and
unfold.
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5. Turn the paper
back over.

6. Unfold to step 2. 7. Fold the paper in half.
8. Fold and
unfold.

9. Reverse-fold the
point on the crease you
just made.

10. Fold and unfold. 11. Fold and unfold
through a single
layer; repeat behind.

12. Fold and unfold
through the intersection
of two creases.

13. Reverse-fold the
top point on the crease
you just made.

14. Fold and unfold.
Repeat behind.

15. Fold and unfold.
Repeat behind.

16. Turn the paper over
and rotate it 1/4 turn
clockwise.

1/4
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17. Fold and unfold
along angle
bisectors.

18. Fold the bottom edge upward.
Note that the crease connects two
crease intersections.

19. Fold the edge down so
that the new crease lines up
with an existing crease.

20. Unfold to step
18.

21. Sink the bottom edge in and
out on the existing creases.

22. Spread-sink the corners.

23. Pull some paper out of
the pockets (unclosed sink).

24. Fold the flap
back down.

25. Repeat steps
22–24 behind.

22–24

26. Squash-fold the
edge. Repeat behind.

28. Squash-fold the
corner. Repeat behind.

27. Fold one flap up in
front and one up behind.
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29. Fold the near flap
back to the right.
Repeat behind.

30. Fold the bottom
corner up so that the
crease lines up with an
existing edge and
unfold. Repeat behind.

31. Sink the corner on
the crease you just
made. Repeat behind.

32. Fold the white
flap down along the
angle bisector.

33. Fold and unfold. 34. Unfold to step 32. 35. Reverse-fold in
and out on the creases
you just made.

36. Fold and
unfold. Repeat
behind.

37. Fold down along
an angle bisector.

38. Fold the white
edge down along
the raw edge.

39. Fold the white
edge back up to the
top.

40. Unfold to step
37.

41. Reverse-fold the
top flap on the existing
crease.

42. Fold one flap to the
left. Repeat behind.

43. Sink the corner.
Repeat behind.

Folding Instructions: Pegasus
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44. Pinch the two right points in
half and swing them downward; at
the same time, the top flap pivots
over to the right, slightly beyond
vertical. Flatten the model firmly.

45. Slide the wings
upward slightly and
flatten.

46. Sink the long edge on
the existing crease.

47. Reverse-fold the
hidden edge upward.

48. Fold the right edge of the
flap over to the left. Repeat
behind.

49. Bring one layer of paper to
the front. Repeat behind.

50. Swing both wings over to
the right.

51. Fold one flap over to
the right.

52. Fold the layers
down.

53. Swing the left flap behind to
the right and bring the two right
flaps (one long, one short) around
to the left. Flatten firmly.

54. Swing the left flap back to
the right. Flatten firmly.

55. Fold the two legs
downward. Flatten
firmly.
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56. Reshuffle the layers of
the body and legs so that they
alternate.

57. Reverse-fold the
centermost layer (which was
freed in the previous step).

58. Swivel the tail
downward.

59. Pull out some loose
paper. Repeat behind.

60. Reverse-fold the
corner. Repeat behind.

61. Mountain-fold a double
layer of paper underneath.
Repeat behind.

62. Mountain-fold another
layer of paper underneath.
Repeat behind.

63. Swing both wings
back to the left.

64. Fold the point down.
There's no exact reference
point.
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65. Unfold. 66. Mountain-fold the
edges inside.

67. Double-reverse-fold the
point downward on the
creases you made in step 63.

68. Valley-fold one
corner down in front and
behind.

69. Sink the white corner; at
the same time, sink the long
edge upward to line up with
the top of the head.

70. Outside-reverse-fold the tip
of the head.

71. Reverse-fold the
point underneath.

72. Pleat to form
ears.

73. Double-rabbit-ear the foreleg.
Note that you are spreading the layers
on the right side of the point. For the
cleanest results, you shouldn't flatten
the paper before doing step 74.
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74. Reverse-fold the thinned
point downward and flatten
firmly.

75. Repeat steps 73–74
behind. Note that the model is
rotated slightly from step 74.

76. Double-rabbit-ear both
hind legs. As with the front
legs, spread the layers on the
right side of the point.

77. Reverse-fold the
legs downward.

78. Reverse-fold the
tips of the wings.

79. Pleat the wings and curve
them out from the body.

80. Pleat the tail. 81. Finished Pegasus.
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9
n the last chapter, we saw how new bases can 
be constructed by assembling tiles composed of 
crease patterns in ways that allow the individual 
tiles to fold flat. By decorating the individual 
tiles with circles and rivers, we created matching 

rules for the tiles; if two tiles mate so that their circles and riv-
ers line up, then the union of the two tiles can fold flat without 
creating any new creases.

Furthermore, we are able to use the pattern of circles and 
rivers to divine the structure of the resulting base: how many 
flaps there are, how long they are, how they are connected to 
one another. While a given polygon may give rise to tiles with 
different crease patterns that have different widths of flaps, any 
two tiles with the same pattern of circles and rivers necessarily 
gives rise to the same flap configuration. We can represent this 
common configuration by a stick figure, in which each segment 
corresponds to a distinct flap.

When we have built a valid tiled crease pattern, the circu-
lar arcs of mating tiles align, creating partial or full circles. A 
contiguous segment of a circle in the tiled pattern corresponds 
to a distinct flap in the folded base. Why, you might wonder, is 
this so? Why use circles? The choice of circles to create match-
ing rules is not arbitrary; there is a deep geometric connection 
between flaps and circles. The use of circles to represent flaps 
is a powerful tool within origami, and so we shall investigate 
it a bit further.

9.1. Three Types of Flap
As we have already seen, in origami there are three different 
types of flaps: corner flaps, edge flaps, and middle flaps. These 

Circle Packing
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types of flaps are named for the point where the tip of the flap 
falls on the square. A corner flap has its tip come from a cor-
ner of the square, an edge flap has its tip lie somewhere along 
an edge, and a middle flap, as you would expect, comes from 
the middle of the paper. For example, the four large flaps on 
a Frog Base are corner flaps; the four stubby flaps are edge 
flaps; and the thick flap at the top is a middle flap. All three 
are illustrated in Figure 9.1.

Figure 9.1. 
Flaps in the base have their tips 
at unique points in the crease 
pattern.

middle flap

edge
flap

corner flap

Paper, like people, can only be in one place at a time. 
Paper that goes into one flap can’t be used for another. There-
fore, every time you create a flap from the square, a portion of 
the paper gets consumed by that flap. The reason to make a 
distinction between the three different types of flaps—corner, 
edge, middle—is that for the same length flap, each of the three 
types of flaps consumes a different amount of paper.

One way to see this difference is to fold corner, edge, 
and middle flaps of exactly the same size from three different 
squares. Figure 9.2 shows the folding of a corner flap. If you 
imagine (or fold) a boundary across the base of the flap, then 
that boundary divides the paper into two regions: The paper 
above the boundary is part of the flap, and the paper below the 
boundary is everything else. The paper that goes into the flap 
is for all intents and purposes consumed by the flap; any other 
flaps must come from the rest of the square.

So, as Figure 9.2 shows, if you fold a flap of length L from 
a square so that the tip of the flap comes from the corner of 
the square, when you unfold the paper to the original square, 
you see that the region of the square that went into the flap 
is roughly a quarter of a circle; precisely, it’s a quarter of an 
octagon. Suppose we made the flap half the width, as shown 
in Figure 9.3, before we unfolded it; then the flap becomes a 
quarter of a hexadecagon. If we kept making the flap thinner 
and thinner (using infinitely thin paper!), the boundary of the 
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flap would approach a quarter-circle. In all cases, the polygonal 
segment is inscribed by a circular segment, which represents 
the limiting case of an infinitely narrow flap. Thus, a circle is 
the minimum possible boundary of the region of the paper con-
sumed by the flap. A corner flap of length L, therefore, requires 
a quarter-circle of paper, and the radius of the circle is L, the 
length of the flap.

Figure 9.2. 
Folding a corner flap of length L from a square.

Figure 9.3. 
Left: making a narrower flap makes the boundary a quarter of a 
hexadecagon. 
Right: the limit of the boundary as the flap becomes infinitely thin 
approaches a quarter circle.

L L

L L LL

Therefore, all of the paper that lies within the quarter-
circle is consumed by the flap, and the paper remaining is ours 
to use to fold the rest of the model.

Now, suppose we are making a flap from an edge. For ex-
ample, if we fold the square in half, then the points where the 
crease hits the edge become corners, and we can fold a corner 
flap out of one of these new corners, as shown in Figure 9.4. 
If we fold and unfold across the flap to define a flap of length 
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L and then unfold to the original square, you see that an edge 
flap of length L consumes a half-circle of paper, and again, the 
radius of the circle is L, the length of the flap.

Similarly, we can make a flap from some region in the 
interior of the paper (it doesn’t have to be the very middle, of 
course). Figure 9.5 shows how such a flap is made. When you 
unfold the paper, you see that a middle flap requires a full 
circle of paper, and once again, the radius of the circle is the 
length of the flap.

Figure 9.4. 
Folding an edge flap of length L from a square.

L L

Figure 9.5. 
Folding a middle flap of length L from a square.

L L

The amount of paper consumed doesn’t depend on the 
angle of the tip of the flap, only its length and location. So any 
flap in any model consumes a quarter, half, or full circle of 
paper, depending upon whether it is a corner flap, edge flap, 
or middle flap.

This relationship doesn’t depend on whether the base was 
constructed from tiles; it doesn’t depend on whether the base 
is a uniaxial base. It is a property of any flap that comes to a 
point in any origami model whatsoever. This relationship gives 
us a new set of tools for designing origami bases that permits 
a more direct approach than the assembly of preexisting tiles; 
we can represent each flap by a circle and work from the pat-
tern of circles directly.
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One of the goals of all scientific endeavors is the concept of 
unification: describing several disparate phenomena as differ-
ent aspects of a single concept. Rather than thinking in terms 
of quarter-circles, half-circles, and full-circles for different kinds 
of flaps, we can unify our description of these different types 
of flaps by realizing that the quarter-circles, half-circles, and 
full circles are all formed by the overlap of a full circle with 
the square, as shown in Figure 9.6. The common property of all 
three types of flaps is that the paper for each can be represented 
by a circle with the center of the circle lying somewhere within 
the square. With middle flaps, the circle lies wholly within the 
square. However, with corner and edge flaps, part of the circle 
laps over the edge of the square. The center of the circle still 
has to lie within the square, though. Thus, any type of flap can 
be represented by a full circle whose center, which corresponds 
to the tip of the flap, lies somewhere within the square.

Figure 9.6. 
All three types of flaps can be represented by a circle if we allow the 
circle to overlap the edges of the square.

9.2. Overlaps
You might have noticed an interesting feature of the circle 
pattern for any base; the circles corresponding to individual 
flaps touch, but do not overlap. In tiled crease patterns, this 
is, of course, by design; no circles overlapped within the tiles 
we started with, so no circles will overlap in the assembled 
crease pattern.

However, in any base, if we represent distinct flaps by 
circles, they can never overlap, whether the crease pattern was 
constructed from a tiling or not. A moment’s reflection will reveal 
why this must be so. Each circle encloses the paper used in a 
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single flap. If two circles overlapped, the paper shared between 
the circles would be included in each of the two different flaps, 
which is obviously impossible. Thus, we can generalize: 

In any valid circle pattern corresponding to an origami 
base, the circles corresponding to two distinct flaps 
may not overlap.

This condition must hold for any origami base—not just 
for the Classic Bases and not just for tiled bases. No matter 
how many flaps the base may have, the circles in the circle pat-
tern for the base cannot overlap. Although this property seems 
pretty innocuous, it is in fact both restrictive and useful. Put 
one way, it is an interesting property of existing bases: Unfold 
any origami base and draw a circle for each flap of the base, 
each circle centered on the point that maps to the tip of the 
flap. No two circles will overlap. This relationship can become 
a useful tool for origami design, for the converse is also true: If 
you draw N nonoverlapping circles on a square, it is guaranteed 
that the square can be folded into a base with N flaps whose 
tips come from the centers of the circles.

If you have a pattern of N circles on a square, it’s quite 
evident that it’s necessary that they not overlap to fold into a 
base with N flaps. It’s not at all obvious that this condition is 
sufficient; but it is, and we will see why in later chapters. This 
is an incredibly powerful result. No matter how many flaps you 
want to achieve in your base, all you need to do is draw a set of 
nonoverlapping circles, and the centers of the circles map out 
the tips of each and every flap in the base.

Using this fact, we can replace a somewhat abstract prob-
lem (design an origami base with N flaps of a given length) by 
a simpler, geometric, more easily visualized and more easily 
solved problem (draw N nonoverlapping circles whose centers 
lie inside a square). By representing each flap in the model by 
a circle and placing all of the circles on the square, we ensure 
that we have allocated sufficient paper to construct each flap. 
The problem of placing circles so that they don’t overlap re-
sembles the packing of cylindrical cans into a box; we call such 
a pattern a circle packing.

The circles need not be the same size. If we use different-
sized circles, we’ll get different-length flaps (recall that the length 
of the resulting flap is the radius of the corresponding circle). So 
merely by shuffling circles around on a square, you can construct 
an arrangement of points that can be folded into a base with the 
same number of flaps, no matter how complex. For that matter, 
by choosing different arrangements of circles, you can devise 
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many different folding sequences giving many different bases, 
even though they have the same number of flaps.

While such a circle pattern is guaranteed to be foldable into 
a base, a guarantee is not the same as a blueprint. But here is 
where we can apply the tiles from the previous chapter. If the 
circle pattern can be cut into tiles so that the circles within 
each tile match up with known tiles, then we can assemble the 
complete crease pattern from these same tiles.

9.3. Connections to Tiles
Consider, for the moment, those tiles we have seen that con-
tain only circles (no rivers). They are of two types: triangles 
and square (the Waterbomb Base tile). In both types of tile, 
the inscribed circles touched each other along the tile edges, 
which, you’ll recall, were axial creases. In fact, the only places 
that circles touched each other were along axial creases. This is 
more than coincidence; it can be shown (and we will do so later) 
that there exist axial creases in any circle packing wherever 
any two circles touch. The newly created axial creases divide 
the square into axial polygons; if we are fortunate enough that 
the axial polygons are recognizable as known tiles, we can fill 
them in with the creases associated with each tile and use the 
resulting creases to fold the shape flat.

Thus, the six simple bases we used to illustrate tiling could 
have been derived directly from circle packings based on their 
desired number of flaps. We represent each desired flap by a 
circle; pack the circles into the square, and then construct axial 
creases that outline the tiles.

The circle diagrams also allow us to address the problem 
of folding efficiency. By representing each flap of a model by the 
appropriately sized circle and drawing the circles on a square, 
you can easily find the arrangement of points on the square 
that gives the most efficient base containing those flaps and, 
as often as not, it will be an elegant base as well.

And since the length of a flap is equal to the radius of 
the corresponding circle, if we design the base by laying out 
points on a square and represent each flap by a circle, the most 
efficient base will come from that layout in which the circles 
representing the flaps are as large as possible. In accordance 
with what we’ve shown above, the circles are to be placed ac-
cording to the following rules: 

• Each flap in the model is represented by a circle.

• The radius of each circle is equal to the length of 
the corresponding flap.
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• The center of each circle lies within the square.

• The circles may overlap the edges of the square, 
but not each other.

We have now assembled the necessary building blocks to 
carry out origami design from the ground up. Throughout the 
history of origami, most designs were modifications, and the 
techniques we’ve learned so far—offsetting, distortion, point-
splitting, grafting, tiling—have implicitly assumed that we 
started with something reasonably close to our final objective. 
But proximity is no longer needed; we can proceed directly from 
the desired subject to a base that contains all the structure nec-
essary to realize our subject. Here, therefore, is an algorithm 
for origami design, called the circle method: 

• Count up the number of appendages in the subject 
and note their lengths.

• Represent each flap of the desired base by a circle 
whose radius is the length of the flap.

• Position the circles on a square such that no two 
overlap and the center of each circle lies within the 
square.

• Connect the centers of touching circles to one an-
other with axial creases, dividing the square into axial 
polygons.

• Identify tiles whose circles match up with the 
circles in the axial polygons.

• Fill in the axial polygons with tile creases.

The resulting pattern can be folded into a base with the 
number and dimension of flaps with which you started.

9.4. Scale of a Circle Pattern
One aspect of the circle method of design that we have already 
seen is that corner flaps consume less paper than edge flaps, 
which consume less paper than middle flaps. Turn this property 
around, and you find that for a given size square, you can fold 
a larger model (with fewer layers of paper) if you use corner 
flaps rather than edge flaps, and edge flaps rather than middle 
flaps. Seen in the light of the circle method, the traditional 
Crane—and the Bird Base from which it comes—is an extremely 
efficient design, since all four flaps are corner flaps, and almost 
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all of the paper goes into one of the four flaps. However, add 
one or two more flaps, and you are forced to use edge flaps. 
Once you start mixing edge flaps and middle flaps, you begin 
to run into tradeoffs in efficiency. Sometimes, it is even better 
not to use the corners for flaps if there are additional flaps to 
be placed on the square.

So, for example, suppose we want to fold a base with five 
equal-length flaps. A little doodling with a pencil and paper 
(alternatively, you can cut out some cardboard circles and 
shuffle them around) will reveal two particularly efficient ar-
rangements of circles, as shown in Figure 9.7.

Figure 9.7. 
Two circle patterns corresponding to bases with five equal-length flaps.

r = 0.354 r = 0.324

Now we have two possible circle patterns. Which one is 
better? Is there any way to quantify the quality of a crease 
pattern?

As mentioned earlier, one measure of the quality of a 
model is its efficiency, that is, the relationship between the size 
of the folded model and the square from which it is folded. A 
quantitative measure of efficiency is to compare the size of some 
standard feature of the base—such as the length of a flap—to 
the size of the original square. The most efficient base is the 
largest possible base for a given size square. Since the flaps 
of the base are represented by circles whose radius is equal 
to the length of the flaps, the most efficient base corresponds 
to the most efficient circle packing, i.e., the packing with the 
largest circles.

To facilitate this comparison, let’s assume our square is 
one unit on a side. (If you’re using standard origami paper, a 
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unit is equivalent to 10 inches or 25 cm.) For the crease pattern 
on the left in Figure 9.7, if all of the circles are the same size, 
it is fairly easy to work out that the radius of each circle, and 
thus the length of each of the five flaps in the base, is

(9–1)

For the pattern on the right, it requires some algebra to 
calculate, but you will find that the circle radius is

(9–2)

Since 0.324 is smaller than 0.354, the radius of each circle 
in the second pattern is about 10% smaller than in the one on 
the left. Since the radius of the circle is equal to the length of 
the flap, the flaps in a base folded from the pattern on the right 
are about 10% shorter than flaps folded from the pattern on 
the left. Thus, a five-flap base made from the pattern on the 
left will be slightly larger and slightly more efficient than the 
pattern made from the one on the right.

These two circle patterns are relatively simple. By con-
necting the centers of the circles with creases and adding a 
few more creases, you can collapse the model into a base that 
has the desired number of flaps. As it turns out, there already 
exist in the origami literature bases that correspond to both 
circle patterns, shown in Figure 9.8. The pattern on the left is 
the circle pattern for the Frog Base, while the one on the right 
is the circle pattern for John Montroll’s Five-Sided Square.

Figure 9.8. 
Full crease patterns corresponding to the two circle patterns.  
Left: Frog Base. 
Right: Montroll’s Five-Sided Square.

There is more than just a size difference between these 
two bases; there is also a qualitative difference between them. 
In the Frog Base, the fifth flap is a thick middle flap and points 
in the opposite direction from the four corner flaps; whereas 
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in the Five-Sided Square, the four edge flaps and the corner 
flap go in the same direction and can easily be made to appear 
identical. (This was the original rationale for Montroll’s design; 
the shape on the far right resembles a Preliminary Fold with 
one extra flap). This is an aesthetic tradeoff between efficiency 
and effect; it’s worth a slight reduction in size to obtain the 
similarity in appearance for all five flaps.

Efficient circle packings also tend to require simpler tiles. 
At the moment, the only tiles we have at our disposal are tri-
angles, rectangles, and parallelograms. Thus, it is most desir-
able to use the circles themselves to create a packing in which 
the induced tiles are triangles or quadrilaterals. This object is 
accomplished by maximizing the number of points of contact 
among circles; on average, the more circles touched by each 
circle—a number called the valency of the circle—the lower the 
number of sides in the surrounding polygons.

You can see this relationship at work in the three regular 
circle packings in Figure 9.9. In the triangular packing, each 
circle touches six others and the polygons are all triangles; in the 
square packing, each circle touches four others and the polygons 
are all quadrilaterals; and in the hexagonal packing, each circle 
touches only three others and the polygons are hexagons.

Figure 9.9. 
Circle packings of varying density and valency.

As the number of neighbors declines, the amount of empty 
space around the circles rises. The most space-efficient pack-
ings are characterized by circles with many neighbors, which 
also give polygons with relatively few sides.

9.5. The Circle Jig
A useful conceptual model for finding an efficient base using 
circle packing is: Represent each point by a circle whose center 
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is confined to the square and whose radius is proportional to 
the desired length of the point. Initially, the circles are much 
smaller than the square, so that there is a lot of extra room 
around each; they can rattle around in the square. But then 
you start inflating each circle (or equivalently, shrinking the 
square) so that the extra room gets slowly squeezed out and 
the circles start bumping up against one another. Eventually, 
all of the room is squeezed out and each circle is pinned into 
place, at which point the basic structure of the crease pattern 
is frozen. You then fit tiles to the resulting pattern of circles, 
fitting tile boundaries along lines between touching circles.

You can find the optimum circle pattern several ways. 
The easiest is to simply draw a square, then start drawing in 
circles; if you can fit them all with room to spare, do the same 
thing again, but this time use slightly bigger circles. Repeat 
until all the circles you draw fit snugly.

This approach, while the simplest and quickest, does re-
quire that you have a pretty good eye for size (and that you’re 
able to draw an accurate circle). An easier technique is to use a 
jig. To make the jig, cut out thick cardboard circles correspond-
ing to the sizes of each of the flaps in your model. Then press a 
thumbtack through each circle in the very center of the circle. 
Turn the circles over (so the thumbtack points upward); you 
can now slide the circles around until they touch and quickly 
try out different arrangements of circles.

Figure 9.10. 
To make a circle jig, push a thumbtack through a circle of the same 
size as the desired flap. Then you can slide the circles around.

But how do you insure that the centers all lie in a square? 
The second part of the jig is the frame. Cut out two L-shaped 
pieces of cardboard as shown in Figure 9.11 and mark a scale 
along the inside of each arm of the L, starting where the two 
arms touch.

Now you can overlap the edges of the two Ls so that their 
inside edges form a square; you can insure that they form a 
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square and not a rectangle by making sure that the inside 
edges always meet at the same points on the scale. Set the 
frame down over your array of circles and shrink the square 
by bringing the two pieces of the frame toward each other 
as shown in Figure 9.12. The inside edges will catch on the  
protruding thumbtacks, thus insuring that all of the circles 
keep their centers inside the square. As you shrink the frame 
and move the circles around, you will reach a condition in 
which most or all of the circles are touching each other and the 
two halves of the frame are held apart by a rigid network of  
touching circles. This pattern corresponds to the optimum 
circle packing for your particular model. By pressing a sheet of  
paper down over the thumbtacks, you can transfer the centers 
of all the circles to another sheet and can then, using compass 
and straightedge, reconstruct the optimum circle pattern  
for folding.

Figure 9.11. 
Make two L-shaped arms with 
scales along their inner edges.

Figure 9.12. 
Close the two L brackets toward 
each other, trapping the thumb-
tacks in the middle.
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A third approach is to set the problem up mathematically 
and use a computer to solve numerically for the optimum ar-
rangement. I will describe a numerical solution to the circle 
packing problem in the section on tree theory later in this 
book.

For small numbers of flaps, you can usually find the solution 
by doodling; for large numbers of flaps, the frame-and-circle jig 
works well. While the number of models with more than eight 
equal-sized flaps dwindles rapidly with increasing numbers of 
flaps, it is interesting to ponder the question: What are the limits 
on the sizes and types of flaps? One can show that as the number 
of flaps N becomes very large, the length r of a flap in the most 
efficient crease pattern approaches a value of

(9–3)
 

For 1000 flaps, this limit takes the value r = 0.017; for a 
25-cm square, this would imply you could make a base with 
1000 flaps, each of which is 0.42 cm long. Within this base, there 
will be at most four corner flaps; there will be (4/r), or 235 edge 
flaps, give or take a few, and the remaining 761 flaps will be 
middle flaps. The folding method for the base—as well as the 
choice of subject—is left as an exercise for the reader.

9.6. Symmetry
Circle packing allows one to go directly from a description of 
the flap configuration to the base. Each flap is represented 
by a circle; by packing the circles into a square and overlay-
ing tiles, we can construct a crease pattern that folds into the  
desired base.

There is an important consideration, however, that we 
have thus far neglected: the symmetry of the subject. Not only 
must we match the number of appendages to the number of flaps 
in the base and the number of circles in the circle pattern; we 
must also match the symmetry of the subject to the symmetry 
of the base and to the symmetry of the circle pattern.

Consider, for example, a ten-appendaged subject, such as 
a tarantula. (A tarantula, being a spider, has eight legs; it also 
has two prominent appendages at the head, called pedipalps, 
which are technically mouth parts, but that appear to be a tenth 
pair of legs.) The legs of a tarantula come in pairs, one on the 
right side, one on the left. Therefore, when we fold a base, all 
of its flaps must also come in matched pairs.

Tarantulas, like most animals, are bilaterally symmetric, 
which is to say that the left side of a tarantula is the mirror 
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image of the right side. If we draw a line down the middle of a 
tarantula (or any bilaterally symmetric animal), legs and other 
appendages that come in pairs will lie wholly on one side or the 
other of this line, which we call the line of mirror symmetry 
of the model. On the other hand, most appendages that come 
singly—such as the head or abdomen—will be made from flaps 
that lie directly upon the line of symmetry.

The flaps of the base must show the same symmetry as 
the tarantula. The base should have a line of mirror symmetry; 
flaps that become legs should lie wholly on one side of the line of 
symmetry or the other. Flaps that become a head or tail should 
lie directly on the line of symmetry. These relationships are 
illustrated in Figure 9.13.

Figure 9.13. 
Left: a tarantula and its line of 
symmetry. 
Right: a hypothetical tarantula 
base and its line of symmetry.

paired appendages

appendage on
symmetry line

paired flaps

flap on
symmetry line

If the subject has bilateral symmetry, then the base should 
have bilateral symmetry. And if the base has bilateral symme-
try, then the crease pattern must also have the same type of 
symmetry. Since each flap can be identified with a particular 
circle in the crease pattern, we can’t use just any crease pattern 
with the right number of flaps; we have to use a crease pattern 
in which each circle has the same relationship to the line of 
symmetry as does its corresponding flap in the base.

If the crease pattern has a line of symmetry, then (usually) 
that line of symmetry must be one of the lines of symmetry 
of the unmarked square. A square has a total of four mirror 
lines of symmetry, which are illustrated in Figure 9.14. But in 
fact, there are only two different types of symmetry possible 
in a crease pattern. It can be symmetric about a line between 
the middle of the two sides, which we call book symmetry; or 
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it can be symmetric about a diagonal of the square, which we 
call diagonal symmetry.

From these symmetry considerations, we see a new rule 
for circle placement emerging: Not only should the number and 
diameter of circles match the number of flaps on the base, but 
the distribution of the circles should also match the symmetry 
of the subject. There are two distinctly different types of circles: 
those that come in symmetric pairs, and those that lie directly 
upon the line of symmetry. Appendages that come in mirror-
image pairs correspond to circles that have mirror-image pairs 
on the square. Appendages that do not come in pairs, such as 
the head and tail, correspond to circles that should lie directly 
upon the symmetry line of the square.

If we wish to fold a ten-appendaged tarantula, we should 
choose a line of symmetry, divide the square into two regions 
along the line of symmetry, and then pack five circles into each 
region in mirror image of each other. This task is easily done, 
and my (conjectured) optimal solutions for the two possible 
lines of symmetry are illustrated in Figure 9.15.

Figure 9.14. 
Mirror symmetries of the square. 
Left: book symmetry. 
Right: diagonal symmetry.

Figure 9.15. 
Left: optimum ten-circle packing with book symmetry (r = 0.197). 
Right: optimum ten-circle packing with diagonal symmetry (r = 0.194).
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Here, the pattern with the line of symmetry parallel to a 
side is slightly more efficient than the one in which the line of 
symmetry is along the diagonal. Consequently, the correspond-
ing base would have longer flaps, and the resulting model would 
be more efficient. Not by much, however. The difference is only 
about 1%.

The diagonal pattern is not a stable pattern; that is, 
we could allow two pairs of flaps to become somewhat larger  
without shrinking anything else. The two flaps that can grow 
are the two in the upper right corner of Figure 9.15. Can you 
see why?

A pattern that is almost as efficient is the twelve-circle 
packing shown in Figure 9.16, which gives twelve paired flaps 
with diagonal symmetry or ten paired flaps, and two on the sym-
metry line, if you use book symmetry. Even if you only need ten 
flaps, since the major crease lines of this pattern all run at 45° 
or 90° to one another, it might be simpler to make a base from 
this pattern than from the preceding two. With the twelve-circle 
pattern, the slight loss in efficiency would be offset by the ease 
of folding and the cleanliness of the lines of the model.

Figure 9.16. 
A diagonal-symmetry twelve-
circle packing (r = 0.177).

The mathematical study of circle packings has tended to 
concentrate upon packings of identical circles, corresponding to 
bases with circles all the same size. However, in origami, we often 
are seeking to construct bases in which the flaps do not have the 
same length. In a grasshopper, for example, the two back legs are 
much longer than the other four legs. When we try to find a circle 
packing for a grasshopper, we should use two large circles for the 
back legs and four smaller ones for the front legs (and perhaps 
a medium-sized circle for the body and another short one for the 
head). Ordinarily, one would choose circle dimensions that cor-
respond precisely with desired flap lengths. However, by judicious 
selection of circle size, we can produce particularly elegant and 
symmetric crease patterns, as we will see.
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9.7. Selective Inflation
We can achieve a high packing density by making use of some 
variability in the design process. In most origami designs, the 
relative lengths of the flaps are not all absolutely fixed. After 
all, if a point is too long, it can be shortened by reversing or 
sinking its tip. Conversely, if it turns out to be too short, that 
deficiency can sometimes be hidden by how the shaping folds 
are performed, for example, in a leg, by reducing or eliminating 
angular bends. So if we allow some variability in the lengths 
of flaps, we can adjust the sizes of the circles to obtain more 
points of contact between adjacent circles.

It’s rarely desirable to allow all of the circles in a pattern to 
vary independently. At the very least, flaps that come in sym-
metric pairs—paired legs, paired wings, perhaps front-and-rear 
legs—should maintain the same relative sizes. The optimum is to 
be found not in fixing all flaps to have the same relative length, 
nor in allowing each flap to vary independently, but somewhere 
in between. To achieve this middle ground, we divide the flaps 
up into groups that are subject to similar scaling.

As a practical matter, it’s usually the longest flaps—which 
have the largest circles—that dominate the structure of a crease 
pattern. Thus, one would typically start designing a crease pat-
tern by putting the largest circles in the square and inflating 
them until they can no longer grow. One then adds the next-
smallest set of circles in the spaces of the larger circles until 
they, too, become fixed; and then add the next set, and so on. 
I call this process of fixation crystallization of the circle pack-
ing, because the process resembles the crystallization of atoms 
when a liquid is cooled below freezing. And just as the atoms 
of a crystallized liquid form a highly symmetric arrangement, 
quite often the crystallized circle packings of origami, too, form 
structures of great regularity and symmetry.

An example will make the process clear. Let’s continue 
with the tarantula we introduced earlier. As I mentioned, ta-
rantulas have in addition to their eight legs an additional pair 
of appendages on the head called pedipalps which resemble a 
tenth pair of legs (although they are typically only about half 
the length of the legs). Thus, we require a base with eight long 
flaps for legs and two somewhat shorter flaps for the pedipalps. 
Tarantulas also have a fairly bulbous abdomen, which we will 
represent by yet another flap, and a cephalothorax (which 
contains the head and body), which will also require a flap. 
Thus, our desired tarantula base would have a total of twelve 
flaps. We could use the twelve-equal-circle packing shown in 
Figure 9.16, but we can construct a more elegant and efficient 
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base by exploiting both the variation in length and importance 
of the different flaps in the base.

The flaps fall into several logical groupings. The longest 
flaps are the eight legs. Although the legs of an actual taran-
tula vary in length, they are close to the same length, and the 
symmetry and foldability of the base will likely be higher if 
we choose them all to be the same length. Thus, the eight legs 
form the first group.

The next group would consist of the pedipalps, which 
are generally about half as long as the legs. We could start by 
choosing their length to be exactly half of the leg length, but 
in practice, anything from about 40% to 60% would probably 
give a workable model.

Next, the abdomen is also about half the length of a leg. 
Since there’s only one abdomen flap, but two pedipalp flaps 
that must come as a matched pair, we’ll give the paired flaps 
a higher priority; fit them in first, then try to find a space for 
the abdomen.

Last comes the head flap. Since the cephalothorax of a 
tarantula is quite short, we almost don’t need this flap at all, 
so we can just count on tucking it in somewhere in the finished 
packing.

Let’s now work through the circle packing step by step. 
The first step is to pick the symmetry line of the base: Will it 
be oriented parallel to a side (book symmetry) or along the 
diagonal (diagonal symmetry)? Let’s choose book symmetry 
for starters. The first step will be to pack the eight leg circles 
into the square.

Figure 9.17. 
Left: starting configuration. 
Right: crystallized circle packing.
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We then inflate the circles, moving them around to keep 
them from overlapping, until they are locked into position. 
Figure 9.17 shows the result of the tarantula circle crystalliza-
tion, which is the largest possible book-symmetric packing of 
eight circles into a square. (An equivalent solution is the same 
pattern flipped vertically.) The radius of a circle relative to the 
length of the side of the square is 0.2182, so the length of the leg 
flaps will be about 22% of the length of the side of the square.

Now, we add the pedipalps, which would be represented 
by two paired circles about half the size of the leg circles. The 
obvious place to put them is in the center of the large hexagon 
in the lower half of the square. Continuing the process of infla-
tion in Figure 9.18, we drop two small circles into an opening 
of the pattern, then expand them until they, too, are firmly 
wedged against their neighbors.

Figure 9.18. 
Left: add two circles for pedipalps. 
Right: crystallized circle packing.

With this configuration, the pedipalp flaps turn out to be 
0.583 times as long as the leg flaps—just about right.

Next comes the abdomen, whose circle should also be about 
half the size of the leg circle, and so we can fit it into the top 
middle of the square, as shown in Figure 9.19.

When this circle is inflated, it turns out to be 0.826 times 
as long as a leg flap—longer than we might like, but perfectly 
acceptable since it is very easy to shorten a flap.

Last comes the head. There are two same-size holes re-
maining in the circle pattern either just above or just below 
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the pedipalps; we could put the head circle in either one. Both 
options are shown in Figure 9.20.

Since the head flap was the last flap that needed to be 
placed, you could just as well place circles in both gaps and then 
choose which flap becomes the head once the base is folded. In 

Figure 9.19. 
Left: Add a circle for the abdomen. 
Right: crystallized circle packing.

Figure 9.20. 
Left: one possible choice for the head circle. 
Right: the other choice.
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either case, all polygons are either triangles or quadrilaterals, 
and so one can now fill in the polygons with the appropriate 
tiles, giving the resultant crease pattern, shown superimposed 
over the circles in Figure 9.21.

Figure 9.21. 
The finished crease pattern.

Although the method of circle packing seems to be very 
straightforward, there are many choices to be made along the 
way, each giving a different result. For example, when placing 
the pedipalps, we could have placed them at the top of the square 
and put the abdomen down in the central hexagon, giving the 
circle packing and crease pattern shown in Figure 9.22.

Figure 9.22. 
An alternative circle packing 
and crease pattern.

The choice of which packing to use will be affected by vari-
ous factors. For example, in the pattern of Figure 9.21, the two 
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pedipalp flaps are middle flaps, which means that they will be 
wrapped inside other flaps in the folded base; this may make 
it difficult to achieve an elegant distribution of the legs in the 
folded model. Also, being middle flaps, they will have many lay-
ers of paper when they are thinned. In Figure 9.22, however, 
the pedipalps are edge flaps and the abdomen is a middle flap, 
which would probably be easier to work with. Since the abdo-
men is not thinned as much as a leg or pedipalp would be (it 
might actually be ballooned outward), it would be more tolerant 
of the extra layers inherent in a middle flap.

Note that in both cases, two of the legs are middle flaps; 
these will unavoidably be thicker than the other leg flaps, 
especially compared to the two corner leg flaps immediately 
above. This variation in leg thickness could conceivably be a 
weakness of any model folded from either base.

A remarkable thing about circle-packing bases is that de-
spite the deterministic nature of their construction, there are 
usually many possible circle-packed bases for a given number 
and distribution of flaps. Consider the following sources of 
variety: 

• There are two possible symmetric orientations for 
the base.

• There are typically several crystallizations of the 
major circles for each symmetric orientation.

• There are typically several placements of the minor 
circles for each crystallization.

For the tarantula configuration—eight legs, two pedipalps, 
an abdomen and a head—a small amount of experimentation 
reveals a host of possible crease patterns, some of which are 
shown in Figure 9.23.

Each crease pattern gives a unique base. Some are el-
egant, some are awkward; some can be folded in plan view 
(i.e., opened out flat, like an open book) while others only work 
in side view, i.e., in profile. All can be turned into a tarantula of 
one sort or another. When you add to that the infinite variations 
possible in thinning and shaping folds, you can see that the 
possibilities for exploiting circle packing are nearly limitless.

Of the nine patterns, (b) (book symmetry) and (e) (diagonal 
symmetry) are actually the same pattern. Both are based on 
an underlying octagon, which can be fit into the square with 
either symmetry. The presence of a valley fold running along 
the symmetry line for most of the model allows the base to be 
folded in plan view, which allows a smooth and rounded top 
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surface of the tarantula. In addition, all of the legs are edge 
points and have exactly the same number of layers. Of all the 
possible bases, I think it lends itself best to the subject; and so 
I have carried this pattern all the way to a folded model, which 
is shown in Figure 9.24.

I would encourage you to try folding the other bases from 
their crease patterns and turn them into your own tarantula 
design.

Figure 9.23. 
An assortment of possible tarantula crease patterns.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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As we see in the tarantula design, circle packing patterns 
and their corresponding crease patterns are most symmetric if 
the circle radii (and thus flap lengths) are chosen from among 
only a small number of values, rather than making every flap 
a different length. It is common to adjust the values in order 
to realize particularly symmetric patterns.

The crease pattern in Figure 9.25 is based on a circle 
packing of six large circles and six medium ones oriented  
in opposite directions, corresponding to six long and six  
medium flaps; three small circles are added to fill in the gaps. 
This gives a pattern that, in the interior of the model, can be 
filled in entirely with triangle tiles, and works very well for 
flying insects, in which the six long flaps can be used for four 
wings, head, and abdomen, while the six medium flaps get 
used for legs.

We could also rotate the pattern by 90° and assign the 
short flaps to head, abdomen, and wings, and the long flaps to 
legs to make a flying insect with proportionately longer legs. 
Can you devise a model based on this hint?

While this circle packing is quite efficient in its use of the 
paper, it still leaves the corners unused, making it a great temp-
tation to figure out something else to do with them. The Flying 
Ladybird Beetle in Figure 9.26 uses the same circle packing 
(although adding two more smaller circles), but further uses 
the corners of the paper to realize the spots on the wings.

Figure 9.24. 
Crease pattern, base, and folded model of the Tarantula.
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Figure 9.25. 
Crease pattern, base, and folded model for the Flying Cicada.

Figure 9.26. 
Crease pattern, base, and folded model for the Flying Ladybird 
Beetle.
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9.8. Circles and Rivers
Thus far, we have considered bases derived from packing of 
circles only. In a circle-packed base, all of the flaps emanate 
from a common point. But, you’ll recall, we were able to con-
struct bases from tiles that contained rivers, regions that 
translated into segments separating groups of flaps. It is also 
possible to introduce rivers into a circle-packing in an analogous 
fashion. That is, we introduce a river between groups of circles 
that corresponds to a segment separating groups of flaps. We 
can still construct a full crease pattern by superimposing tiles 
containing rivers on the pattern of axial polygons.

An example of this is illustrated in Figure 9.27, an insect 
with the Latin name Acrocinus longimanus. It contains four 
long flaps (corresponding to the two long forelegs and antennae) 
and eight shorter flaps (legs, head, abdomen). We introduce 
a river running around four of the legs, which introduces a 
segment between the two groups of flaps. We can, however, 
still fill in the axial polygons with tile crease patterns that 
incorporate the rivers; the result is a base with the desired 
flap configuration.

Figure 9.27. 
Crease pattern, base, and folded model of the Acrocinus longimanus.

9.9. Mathematical Circle Packings
The circle method gives us a technique for designing a base that 
has any combination of flaps of different sizes by relating it to 
a simple geometrical construction. Specifically, the problem of 
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designing a base with N equal-length flaps can be solved by 
finding a distribution of N nonoverlapping circles whose centers 
all lie within a square.

In origami, packings of unequal circles arise more often 
than equal circles because origami bases are more often com-
posed of flaps of differing lengths. When all of the flaps are 
the same length, however, then all of the circles are the same 
diameter. This problem turns out to have some interesting 
mathematical connections, so we will digress briefly to explore 
them. The problem of packing N nonoverlapping circles with 
their centers inside of a square is equivalent to the problem of 
packing N nonoverlapping circles entirely inside of a somewhat 
larger square; Figure 9.28 shows how the same pattern solves 
both problems.

Figure 9.28. 
A solution for an origami circle packing is equivalent to a circle 
packing in which the circles must lie completely inside the square.

The similarity between the two problems would be only 
a curiosity but for one thing; the problem of packing equal 
nonoverlapping circles entirely inside a geometric figure is 
a well-researched field in mathematics. This correspondence 
between the origami design problem and the mathematics of 
circle-packing is fortunate, because many of the solutions to 
circle-packing problems have already been enumerated in the 
open mathematical literature. Instead of rederiving a solu-
tion (not an easy task, depending upon the number of flaps), 
one can merely look up the optimum circle pattern for a given 
number of circles.

For the mathematical problem of packing N equal nonover-
lapping circles into a square, the optimum solutions for N = 1 
through 10 are known and have been mathematically proven 
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to be optimal. Thus, for the origami problem of folding a base 
with N equal-length flaps, the optimum crease patterns are 
also known. The optimum circle patterns and lengths of each 
flap (as a fraction of the side of a unit square) are given in 
Figure 9.29 for N = 1 through 9. I have only drawn that por-
tion of each circle that appears within the square.

Figure 9.29. 
Optimal packings for one through nine circles.

N = 1
r = 1.000

N = 2
r = 0.707

N = 3
r = 0.518

N = 4
r = 0.500

N = 6
r = 0.300

N = 5
r = 0.354

N = 9
r = 0.250

N = 8
r = 0.259

N = 7
r = 0.270

Because circle packing is a well-explored mathematical 
field, it is possible to look to the mathematical literature for 
patterns that give rise to origami bases (as I have done here). 
In fact, as new circle packings are discovered, new origami 
bases will come right along with them. The nine circle packings 
shown in Figure 9.29 each have corresponding origami crease 
patterns, which are shown in Figure 9.30 superimposed on the 
circle packings.
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In each figure, I have drawn in the major creases of the 
base. Notice something: Wherever two circles touch, there is a 
major crease connecting the centers of the two circles. These 
lines are shown as mountain folds in the figures. Note, too, that 
any crease that hits one of these mountain lines other than at 
a circle center hits it at a right angle. These properties hint at 
some deeper relationships between circle packings and their 
corresponding crease patterns. As we will see in later sections, 
there are several different types of creases that all share con-
sistent properties.

You might find it an illuminating exercise to transfer the 
crease patterns shown here to origami paper squares and to 
fold the corresponding bases to verify that they do, indeed, have 
the proper number of flaps and that the flaps are all the same 
size within each base. You will also discover something about 
the coloring pattern of the creases. Most of the black creases 

Figure 9.30. 
Crease patterns for optimal bases with one through nine flaps.

N = 4 N = 6N = 5

N = 9N = 8N = 7

N = 1 N = 2 N = 3
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will be mountain folds; all of the colored creases will be valley 
folds; and the light creases will go in either direction, depend-
ing on how you choose to orient the flaps.

It is also instructive to note what kind of flap—corner, 
edge, or middle—you get with each base. The distribution of 
flaps is enumerated in Table 9.1.

Table 9.1. 
Numbers of corner flaps, edge 
flaps, and middle flaps in optimal 
circle-packed bases.

Given the inefficiency of middle flaps versus edge flaps—
remember, a middle flap takes four times as much paper as 
a corner flap of the same length—it is somewhat surprising 
to find that for as few as five flaps, it is more efficient to use 
a middle flap than to create another edge flap. For only three 
flaps, one corner flap and two edge flaps are preferable to all 
three corner flaps.

Since these patterns give the most efficient bases for the 
desired number of flaps, it is not surprising that several of 
them have been in existence for hundreds of years. The pat-
terns for one, two, four, and five flaps correspond to four of the 
traditional bases—the Kite, Fish, Waterbomb, and Bird Bases, 
respectively (where the top of the Bird Base forms a fifth flap). 
The first three bases have all of their flaps on the corner; the 
last has one middle flap.

What is surprising, though, is that several of these circle 
patterns correspond to bases that have not yet been published 
in the origami literature! Specifically, I am aware of no pub-
lished design based on the symmetry of the patterns for N = 
3, 6, 7, and 8. I find this remarkable because there are quite 
a few models that require three, six, seven, or eight flaps, and 
these patterns correspond to the most efficient structures for 
getting each number of flaps. It is illuminating to examine each 
of these crease patterns in more detail.

Corner 
Flaps

Edge 
Flaps

Middle 
Flaps

1 1
2 2
3 1 2
4 4
5 4 1
6 2 3 1
7 2 4 1
8 4 4
9 4 4 1
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9.10. Bases from Equal Circle Packings
The first unusual structure in this group is the N = 3 case. I 
suspect it is undiscovered because this pattern is not similar to 
any well-known base found by angle bisection. Its symmetry is 
based on the uncommon 30°–60°–90° right triangle rather than 
the more familiar 22.5° angle that you find in the four Classic 
Bases. Also, two of the three flaps lie on an edge, rather than 
at the corner; since edge flaps tend to be thicker, most early 
origami designers avoided using edge flaps unless absolutely 
necessary. I am not aware of any origami model that uses this 
pattern in a square to realize a subject with three major flaps, 
despite there being a number of such subjects around, e.g., 
long-legged birds. (There are, not surprisingly, models made 
from an equilateral triangle that utilize the creases within 
the triangle.) An example of a model of my own that uses this 
symmetry is shown in Figure 9.31, with folding instructions at 
the end of the chapter.

Figure 9.31. 
Crease pattern, base, and folded model of the Emu based on the 
N = 3 circle packing.

Notice that three of the four corners of the square go un-
used in this base; I suspect that the profligate waste of such a 
large fraction of the paper has deterred folders from making use 
of this base, and indeed, it is difficult to resist the temptation to 
use some of the extra paper for wings, feathers, color-changes, 
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or something in the model derived from this pattern. I used the 
largest unused corner to extend the tail in the emu.

The N = 4 case is quite obviously the crease pattern for 
the Waterbomb Base, which has been widely used for origami 
models. Similarly, the N = 5 case has a single flap in the middle 
of the square; it is the Bird Base. But that’s unexpected; the 
Bird Base is normally considered to have four equal flaps, not 
five. How can this be?

Figure 9.32. 
The Bird Base as a five-flap 
base.

Figure 9.33. 
Narrowing the flaps of a Bird 
Base by spread-sinking turns it 
into a five-equal-flap base.

As shown in Figure 9.32, if we treat each flap as starting 
from a point exactly halfway between the top and bottom of 
the model, the four long flaps of the Bird Base become shorter 
and the blunt top flap becomes longer. We can get all five flaps 
to have the same aspect ratio by narrowing the top flap, as 
shown in Figure 9.33.

And if we add four more smaller circles to the five-circle 
pattern corresponding to four more smaller flaps, we get the 
crease pattern for yet another Classic Base, the Frog Base.

The N = 1, 2, 4, and 5 cases correspond to Classic Bases 
that have been known for hundreds of years. However, the N = 6  
solution, like the N = 3 pattern, has not been explored, or to 
my knowledge, even recognized. I suspect that it is because the 
N = 6 pattern does not incorporate either the standard 22.5° 
symmetry or the less-common 30°–60°–90° symmetry and so 
was unlikely to have been found by trial-and-error folding 
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along symmetric lines. Because it has a line of bilateral sym-
metry with two flaps lying on one side and two on the other, 
it seems ideally suited for mammals and birds. I have used it 
for a general-purpose bird base that gives both legs and wings 
quite efficiently. The two unused corner flaps may also be pulled 
out and used to great effect in color changes to make multiple-
colored birds. An example of this base and a two-colored bird 
folded from it are shown in Figure 9.35; the folding instructions 
are given at the end of the chapter.

Figure 9.35. 
Crease pattern, base, and folded model for the Songbird, based on 
the N = 6 circle packing.

This model is the second Songbird in this book (the first 
was in Chapter 6). The two models illustrate the fact that a 
single subject can be realized as an origami model in different 

Figure 9.34. 
Circle and crease pattern for the 
Frog Base.
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ways, depending on which features are emphasized, which 
are merely suggested, and how the detail folds and shaping 
are rendered.

You should also compare this crease pattern and base to 
that of the Turtle (Chapter 7, Figure 7.1), which was also made 
from a six-flap base. The turtle base had all its creases running 
at multiples of 30° and thus had a more symmetric crease pat-
tern and more neatly aligned edges. The songbird base here is 
less symmetric, but is slightly larger relative to the size of the 
square. Can you make a turtle from this base?

The N = 7 solution combines both squares and equilateral 
triangles into the underlying symmetry. An unusual feature 
of this solution is the fact that one of the circles (the one in 
the lower left corner) doesn’t touch any other circle. The pa-
per between the lower left circle and the rest of the model is 
wasted. One could put this extra paper to use, however, by en-
larging the lower left circle (corresponding to lengthening the 
associated flap) and using this base to fold a model with one 
particularly long appendage, for example, an extra-long tail. 
We can carry out this enlargement by expanding the lower left 
circle until it touches one of the others (the middle circle, as 
it turns out). This expansion gives the circle pattern shown in 
Figure 9.36, corresponding to a shape with six equal-sized flaps 
and a seventh slightly larger one. I have also superimposed a 
crease pattern that gives a seven-flap base. I encourage you to 
enlarge the figure, draw it on a square, and fold the base; it is 
remarkable how all of the circles line up with each other once 
you have collapsed the square into the base.

Figure 9.36. 
Crease pattern and base for the 
N = 7 circle packing with one 
flap enlarged.

There is a mathematical term for the condition in which a 
circle is free to move without changing the overall scale of the 
model: If any circle can move without altering the scale, the 
pattern is said to be unstable; any pattern in which no circle can 
move is said to be stable. It is easy to see that a pattern is stable 
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only if every circle touches either another circle or an edge of 
the square at three well-separated points (not all in the same 
semicircle). It will turn out as we explore more sophisticated 
design algorithms that the issue of stability plays a crucial role 
in the construction of crease patterns for bases.

The problem of getting eight flaps in a base is encoun-
tered when one attempts to fold the simplest insects. Beetles, 
for example, must have a head, abdomen, and six legs, at a 
minimum. Of course, it is always challenging to add more 
body parts: Thorax, antennae, mandibles, horns, wings, and  
forewings would be nice, each requiring another flap (and we 
will see examples that have all of them). But even the simplest 
insect must have six legs, which by the standards of classical 
folding, is no mean feat. Historically, the first published instruc-
tions for a one-piece six-legged insect of which I am aware is 
George Rhoads’s Bug. It is made from a blintzed Bird Base, 
which corresponds to the N = 9 circle diagram.

Figure 9.37. 
Crease pattern and folded model for Rhoads’s Bug, made from a 
blintzed Bird Base and the N = 9 circle packing.

We encountered the blintzed Bird Base back in Chapter 4. 
It is constructed by folding the four corners to the center of a 
square, folding a Bird Base from the reduced square, and then 
unwrapping the extra paper to form new flaps. There is also such 
a thing as double-blintzing, in which the four corners are folded 
to the center, and those four corners are folded to the center 
again, before folding a base and unwrapping all the layers. The 
double-blintzed Frog Base, with its thirteen equal-length flaps, 
was used by the Japanese master Yoshizawa as early as the 
1950s for his famous Crab, and surely holds the record for the 
pointiest base of the Classical period.
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Figure 9.38. 
Crease pattern and folded model for Yoshizawa’s Crab, made from a 
double-blintzed Frog Base and the N = 13 circle packing.

Figure 9.40. 
Left: N = 8 circle pattern. 
Right: a base made from the 
N = 8 circle packing.

Figure 9.39. 
Three stages in the progression of the blintzed Frog Base. Left: the 
Frog Base. Center: a blintzed Frog Base. Right: a double-blintzed 
Frog Base.
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The circle pattern provides a simple way to see the effect 
of blintzing a base. Although each stage of blintzing doubles the 
area of the square, it doesn’t double the number of flaps, since 
some of the paper is consumed turning some quarter- or half-
circles into full circles. In the progression of the blintzed Frog 
Base shown in Figure 9.39, the original Frog Base has five long 
flaps; the blintzed Frog Base has nine, and the double-blintzed 
Frog Base has thirteen, numbers that are easily verified by 
examining the circle pattern.

For nine flaps and nine circles, the closest packing of circles 
gives the singly blintzed Bird Base that was used for Rhoads’s Bug. 
But you only need eight flaps for a simple insect—head, tail, and six 
legs—and the N = 8 optimum circle packing solution, like N = 6, 
gives a crease pattern perfectly suited to the simple insect. For 
the same size square, the N = 8 pattern gives eight flaps that 
are about 4% longer than the flaps derived from the blintzed 
Bird Base. As with N = 3 and N = 6, the most efficient base is 
rather unexpected. Four of the eight flaps are middle flaps—
ordinarily, the least efficient way to make a flap—and I am 
unaware of any prior design based on this pattern. Neverthe-
less, the overall solution is the most efficient eight-equal-flap 
base there is. I leave it to the reader to devise a model that 
exploits this base.

The N = 9 pattern, as mentioned earlier, corresponds to the 
blintzed Bird Base. The crease pattern for the next case, N = 10 
flaps, is generated by a circle packing of particular mathemati-

N = 10 (ca. 1970)
r = 0.2083+

N = 10 (ca. 1971)
r = 0.2096+

N = 10 (ca. 1987)
r = 0.2100+

N = 10 (ca. 1989)
r = 0.21059+

N = 10 (ca. 1990)
r = 0.21063+

Figure 9.41. 
Optimal ten-circle packings 
giving ten-pointed bases. 
Upper left: Goldberg’s solution. 
Upper center: Schaer’s solution. 
Upper right: Milano’s solution. 
Lower left: Valette’s solution. 
Lower right: Mollard and Payan’s 
solution, the proven champion.
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cal significance. While there are mathematical proofs that the 
patterns shown in Figures 9.29 and 9.30 for N = 1 through 9 are 
the most efficient possible, the most efficient packing for N = 10 
has been the source of some controversy. Not until 1997 was the 
most efficient packing known. Over a 25-year span, five different 
circle packings for N = 10 were found, each more efficient than 
the previous (although the lengths of the flaps in each solution 
are all within 1% of one another). In each case, the discoverer 
conjectured that he had found the most efficient arrangement 
possible; in the case of all but the last, a more efficient solution 
was subsequently found. The most recent solution, discovered 
in 1990 by the mathematicians Mollard and Payan, gives a 
flap length of 0.2106+; it was proven optimal by the Dutch 
mathematician Hans Melissen in 1997. The five solutions and 
their lines of symmetry are given in Figure 9.41.

I find it remarkable that such a simple answer to the most 
efficient packing of ten circles into a square should be so elusive. 
And if there is so much room for variation in the circle packing 
for this one particular origami base, think of the possibilities 
for arbitrary origami structures.

9.11. The Napkin Folding Problem
We now have the machinery to design bases with any number of 
flaps. We also have the tools to solve an interesting mathematics 
problem that circulated among mathematicians in the mid-1990s, 
called, at the time, the Margulis Napkin Problem for Russian 
mathematician Grigory Margulis (although it seems to have in 
fact been coined by a different Russian mathematician, Vladimir 
Arnold). The problem was posed as a request for a proof:

Prove that no matter how one folds a square napkin, 
the flattened shape can never have a perimeter that 
exceeds the perimeter of the original square.

That is, if you start with a square 1 unit on each side, prove that 
you can’t fold a shape whose perimeter is greater than 4 units.

The somewhat surprising fact is that the assertion isn’t true—it 
is indeed possible to fold a shape with a perimeter greater than 4. 
Figure 9.42 shows the folding sequence for a shape whose perimeter is 
slightly greater than 4 units—4.120 units, to be exact. Remarkably, a 
counterexample to this recent mathematical conjecture can be made 
from a 200-year-old shape: the venerable Bird Base.

A closer examination of this shape, coupled with our under-
standing of circle-method origami design, reveals how this can be 
accomplished.
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Figure 9.42. 
Folding sequence for a shape that disproves the conjecture known as 
the Napkin Folding Problem. The dimensions of the various segments 
of the perimeter are given in the last step; the total perimeter adds 
up to 4.120.

{

4 flaps

0.5

0.207

Perimeter = 4.120

0.073

0.155

0.448

0.323 0.135

0.323

0.155

0.448

Figure 9.43. 
The circle packing for the Bird 
Base.
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Figure 9.44. 
Left: sinking in fourths narrows the flaps. 
Center: sinking a larger number of times thins the layers further.
Right: the limiting case with zero thickness flaps.

The crease and circle pattern for the Bird Base is shown in 
Figure 9.43. The Bird Base consists of four corner flaps (modeled 
by the four corner circles) and one middle flap, which is provided by 
the single middle circle. Each of the four corner flaps is one quarter 
of the perimeter of the square, so if the flaps were splayed out into a 
star shape, the perimeter of the star would be, at most, equal to the 
perimeter of the square. But the middle flap is an extra flap. Thin-
ning the entire base so that the middle flap can stick out creates 
extra perimeter. Thinning the base further, as shown in Figure 9.44, 
removes some of the overlap from the center, allowing the perimeter 
to get slightly larger as the thinned base approaches its limit, where 
each flap has zero thickness, and the perimeter approaches a value 
of 4.414.

It was the creation of a middle flap that allowed the perimeter 
to exceed the conjectured limit of 4 units. But by creating more 
middle flaps, we can increase the perimeter even further. In fact, 
rather astonishingly, there is no upper limit to the perimeter of 
a flat fold—at least, one made with mathematically ideal (zero 
thickness) paper. You can start with as small a sheet as you 
like. From a postage stamp, you can theoretically fold a shape 
whose perimeter is the perimeter of the galaxy.

How can we do this? Circle-packing gives the key. Suppose 
we pack an N × N array of circles into a unit square, as shown 
in Figure 9.45.

Each of the circles has a radius 

(9–4)

Divide by 4 Divide by N

� 

r =
1

2(N −1)
.
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N2

N −1

Figure 9.46. 
Crease pattern for the N × N 
circle packing. Only the upper 
left portion is filled in.

Using our circle-packing and tiling techniques—filling in 
the axial creases, adding smaller circles to break up quadri-
laterals into triangles—we can add creases to this pattern to 
collapse it into a base with N 2 total flaps.

The result after folding this crease pattern will be a base 
with N2 points, each of length 1/(2(N–1)). Using standard ori-
gami techniques of sinking, the points can be made arbitrarily 
thin. Once the points are thinned, they can be reverse-folded out 
in all directions, making a star with N 2 points. This sequence 
is shown in Figure 9.47.

Now, although the points overlap each other somewhat 
at their base, they can be made arbitrarily thin by making the 
sink folds arbitrarily close together. So the total perimeter of 
the star shape approaches the value

 2 × (number of points) × (length of each point),    (9–5)

where the extra factor of 2 comes from the fact that each point 
contributes two sides to the perimeter. Thus, the total perim-
eter is

(9–6).

Figure 9.45. 
An N × N circle packing.

© 2012 by Taylor & Francis Group, LLC



333Chapter 9: Circle Packing

Figure 9.47. 
Sequence for turning the base 
into a star.

Let’s look at the perimeter for several values of N: 

In fact, as N, the number of points along one side, becomes 
large, the perimeter approaches N as its limiting value. Thus, 
the perimeter can be made arbitrarily large. We can also use 
this result to work backwards from the desired perimeter. For 
example, to fold a square postage stamp one inch on a side 
so that it has the same perimeter as—let’s take something 
small—the circumference of the world (24,000 miles), we would 
need to make N equal to about 1.5 billion; the resulting shape 
would have about 2 billion billion points, and each point would 
be about 17 microns long—about 1/5 the diameter of a human 
hair. Clearly, we’d need that special zero-thickness paper that 
exists in mathematicians’ imagination to fold such a thing! Not 
to mention a lot of patience.

Interestingly, several origami artists had created models 
on these principles that belied the conjecture of the Napkin 
Folding Problem years before it had even arisen in math-
ematical circles. My own Sea Urchin, which we saw back 
in Chapter 4 (Figure 4.8) utilizes such a square array of 25 
points, and the points, properly thinned and flattened, give a 
star whose perimeter approaches a limit of 2 × (25) × (1/8) = 6.25. 

Table 9.2. 
Theoretical perimeter versus 
number of circles packed along 
one side.

N 2 3 4 5 6 7 8
Perimeter 4 4.5 5.33 6.25 7.20 8.17 9.14
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Similar urchins by others, including Toshiyuki Meguro, who 
pioneered circle-packing design methods in Japan, abound.

9.12. Comments
The circle method of origami design described in this chapter 
can be an extremely powerful tool for designing complex ori-
gami models, particularly beetles and insects. For any pattern 
of circles, there exists a folding method that transforms that 
pattern into a base with the proper number and size of points. 
However, although the technique of packing circles guarantees 
that a folding sequence exists to convert the circle pattern into 
a base, it doesn’t provide much guidance as to how to execute 
a step-by-step folding sequence for that base—a shortcoming 
of most algorithmic origami design. So even if you work out a 
circle pattern, you still have some work ahead of you to figure 
out how to fold the crease pattern into a base.

By packing circles densely so that each circle touches sev-
eral others, we can connect the centers of touching circles with 
creases, which turn out to be axial creases in the base. If the 
polygons and circle fragments outlined by the axial creases turn 
out to resemble the circle patterns of known tiles, we can fill 
in the polygons with tile crease patterns and, voilà, construct 
the full crease pattern for an origami base.

Furthermore, we can, with some further effort, add riv-
ers of constant width to the circle packing to create bases that 
contain segments separating groups of flaps. These circle/river 
patterns, too, may be filled in with crease patterns if they hap-
pen to correspond to known tiles.

But that’s a very big if. While we have progressed a long 
way in designing origami bases, so that we can start with any 
number, length, and connectivity of flaps we desire, we are 
still dependent upon the existence of tile patterns for filling in 
the creases of the axial polygons. There is no guarantee that 
such tiles exist.

At least, there is no guarantee just yet. But as we will see 
in the next chapter, there is a small number of general-purpose 
crease patterns that will allow us to fill in any circle pattern 
whatsoever. These patterns—some new, some old—provide the 
final step in the construction of a generalized uniaxial base.
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Folding Instructions

Emu

Songbird 2
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1. Begin with the white side
up. Fold and unfold along a
diagonal.

2. Fold pinch marks at the
midpoints of two adjacent
sides.

3. Fold two edges so that their
corners touch the pinch marks.

4. Fold and unfold through
all layers.

5. Fold the model in half.

Emu
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6. Fold the lower left
point up to lie along an
existing crease.

7. Rotate the model 1/4 turn
clockwise, so that edge AB
runs vertically.

A

B

1/4

8. Squash-fold the top point
down to corner B.

A

B

9. Petal-fold. 10. Fold the point down. 11. Turn the model over.

12. Fold the left flap up to the
right so that the two creases in
the middle line up.

13. Unfold. 14. Lift up the near corner at the bottom
and squash-fold the left point over to the
right, using the creases you just made.

15. Fold the corner back to
the left.

16. Tuck the white
flaps inside the model.

17. Fold and unfold. 18. Fold a rabbit ear using
the creases you just made.
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21. Turn the
model over.

22. Lift up
one point.

23. Fold one
layer to the
left.

24. Squash-fold the
legs upward.

25. Petal-fold the legs. 26. Pull out some
loose paper.

27. Close up the legs
and reverse-fold them
downward.

28. Crimp the feet. Pull
some loose paper out of
the head.

29. Pinch the head and
swing it down.

30. Crimp the beak
and tail.

31. Finished Emu.

19. Fold the tip of the
rabbit ear down
toward the right; the
model will not lie flat.

20. Fold the
top flap down
and flatten the
model.
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Songbird 2

1. Begin with the colored side up.
Fold and unfold from side to side.

2. Fold the top down to the bottom
and make a small pinch extending
inward from the edge.

3. Fold the top right corner down to
lie on the crease you just made and
make a pinch along the top edge.
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4. Fold the bottom right corner
up to the pinch you just made
and make another pinch along
the right edge.

5. Fold the bottom edge up so
that the corner aligns with the
mark you just made.

6. Fold the top edge behind
along a crease that lines up with
the folded edge.

7. Fold along the diagonals
through all layers (valley on the
left, mountain on the right) and
unfold.

8. Crimp the middle of the model and
bring the corners together, opening
out a pocket on the underside.

9. Squash-fold the white
flap in front and the
colored one behind.

10. Bring two layers of paper to the
front on each side. This is most easily
done by unfolding the near layers,
changing crease directions and then
refolding.

11. Fold a single layer in
so that the edges meet in
the middle.

12. Reverse-fold the edges.
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13. Turn the model over. 14. Fold and unfold
the near flaps.

15. Fold one flap to the
right.

16. Pleat the flap.

17. Release the layers
of paper that are trapped
in the pleats.

18. Fold the flap back to
the left.

19. Repeat steps
15–18 on the right.

15–18

20. Petal-fold. The
valley fold is on an
existing crease.

21. Tuck the flap up
inside the model.

22. Fold two flaps to
the right.

23. Fold two corners
in to the center line
and unfold.

24. Sink the two corners
on the creases you just
made.
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25. Simultaneously squash-
fold the upper, hidden flap,
and spread-sink the lower
corner.

26. Close up the
spread sink.

27. Mountain-fold
the flap behind.

28. Mountain-fold the flap
behind so the edges line up.

29. Fold a group of
layers to the left.

30. Fold two edges in so
that the creases line up
with the hidden edges
behind.

31. Fold one
pleated flap
back to the left.

32. Repeat steps
22–31 on the right.

22–31

33. Turn the
model over.

34. Fold a single
flap down as far
as possible.

35. Fold the model in
half and rotate 1/4 turn
clockwise.

1/4
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36. Crimp the flap on the right
upward.

37. Crimp the head downward.

38. Reverse-fold the legs downward. 39. Double-rabbit-ear the two legs.

40. Reverse-fold the legs.
Rotate the model slightly
counterclockwise.

41. Squash-fold the tail
from side to side.

42. Crimp the feet so that the
model stands flat. Fold the
small flap up on the side of
the head and repeat behind.

43. Fold the layers
underneath the head inside.

44. Open out and round
the eye. Pinch the beak.

45. Finished Songbird.
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10
e have seen that new bases can be con-
structed from tiles, pieces of old bases. By 
inscribing circular arcs within tiles and 
mating them according to a few simple 
matching rules, we can build new bases 

with new arrangements of flaps. However, assembly of tiles to 
build new bases can be a hit-or-miss proposition: You are lim-
ited to working with those tiles you have previously cataloged, 
and there is no guarantee than a given assembly of tiles will 
fit efficiently into a square of paper.

In the previous chapter, we saw how one can use circle 
packings to find a pattern of points within a square (or any 
other shape of paper) that is guaranteed to be foldable into 
an origami base that has a specified length and distribution 
of flaps. When the configuration of circles happens to match 
the circles (and, if needed, rivers) of known tiles, then we can 
fill in the crease pattern with the tile creases, and the paper 
can be collapsed into a base. However, a problem arises if the 
circle pattern matches none of the tiles we know so far. With 
the addition of just a few more patterns, however, we can find 
flat-foldable crease patterns for any circle/river packing—and 
for a great deal more besides.

This process is not as difficult as you might think, be-
cause there aren’t that many different types of patterns that 
are needed. Most of the time, the polygons created by circle/
river packings are triangles (as they have been in most of the 
examples we’ve seen thus far). More complicated bases may 
have quadrilaterals, pentagons, or higher-order polygons. All 
can be collapsed so that their edges lie on a line and they align 
with one another properly. What makes the problem of design-
ing a base tractable is that, to a large degree, each polygon can 

Molecules
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be treated on its own. A highly complex base with numerous 
points can be broken up into a collection of relatively simple 
polygons, each analyzed individually; and when you have the 
crease patterns for the individual polygons, you can put them 
together to realize the crease pattern for the full square.

10.1. Tangent Points
Let us examine again some existing bases for common features 
of the crease pattern that we can relate to its underlying circle 
pattern. Figures 10.1 through 10.5 show the crease and circle 
pattern for bases with one through five equal-sized points. 
These crease patterns cover five different bases, but share sev-
eral interesting features. In each crease pattern, I’ve labeled 
with a dot the point where adjacent circles touch.

Figure 10.1 shows the crease and circle pattern for the 
Kite Base. The Kite Base appears to be a single flap, but we can 
also think of it as a base with one long flap joined to one short 
flap; both flaps are represented by circles in Figure 10.1. If we 
recognize that the horizontal crease on the right in Figure 10.1 
is the boundary between the two flaps, then we see that each 
flap is defined by a circle; that the two circles touch at a point, 
that is, they are tangent circles; and that there are two creases 
that run through the tangent point, marked with a dot in the 
figure. The crease that connects the centers of the two circles 
is of a type that we have already met; it is an axial crease. The 
other is perpendicular to the axial crease and is tangent to both 
circles.

Figure 10.1. 
Left: crease and circle pattern 
for the one-flap Kite Base. 
Right: the folded Kite Base.

Now look at Figure 10.2, which shows the crease and circle 
pattern for the Fish Base. The Fish Base has two long flaps and 
two short flaps. All four flaps are represented by circles, and 
adjacent circles touch. As with the Kite Base, there is an axial 
crease (or raw edge) between the centers of touching circles, 
and at each point of tangency, there is a crease perpendicular 
to the crease between centers.
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There’s a second interesting phenomenon as well. Observe 
that there are 5 points where adjacent circles touch each other, 
called tangent points; I’ve labeled them all with a dot. In the 
folded base, which is shown on the right, all of the tangent 
points lie either side-by-side or one atop the other; if you poked 
a pin through one of them, the pin would hit every tangent 
point in the model.

Now let’s look at another base. Figure 10.3 shows creases 
and circles for a base with three equal flaps. Again, we have 
axial creases between touching circles and a second set of 
creases perpendicular to the first set that cross at the point of 
tangency. There are three tangent points, and in the base, all 
three tangent points lie on top of one another.

Figure 10.2. 
Left: crease and circle pattern 
for the two-flap Fish Base. 
Right: the folded Fish Base.

Figure 10.3. 
Left: crease and circle pattern 
for the three-flap base. 
Right: the folded base.

The first three circle bases had only edge and corner flaps. 
Do the patterns we observed hold for middle flaps? Indeed they 
do. Figure 10.4 shows the Bird Base, which has four long flaps 
and one short one, which is a middle flap. Again, circle centers 
are connected by axial creases, and creases emanate from the 
points where circles touch that are perpendicular to the axial 

Figure 10.4. 
Left: crease and circle pattern 
for the five-flap Bird Base. 
Right: the folded base.
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creases. There are eight tangent points in the crease pattern; 
in the folded base, all eight lie on top of one another.

And the pattern continues for the Frog Base shown in 
Figure 10.5: axial creases between the centers of touching 
circles, perpendicular creases emanating from the points of 
tangency, and all tangent points (this time, 16 of them) lie on 
top of each other.

Figure 10.5. 
Left: crease and circle pattern 
for the five-long-flap Frog Base. 
Right: the folded base.

Five examples don’t prove universality, but they do sug-
gest that there are features common to all circle pattern bases. 
In fact, there are several common attributes of circle method 
crease patterns: 

• Where two circles touch, there is always a crease 
that connects the centers of the two circles. We’ve al-
ready encountered these; they are the axial creases.

• When you fold the crease pattern into the base, all 
of the creases between touching circles—the axial 
creases—wind up lying on top of each other, i.e., along 
a single line, which is the axis of the base.

• Where two circles touch, there are also creases that 
are tangent to the two circles and perpendicular to the 
crease between their centers. These creases appear as 
horizontal lines in the bases in Figures 10.1 through 
10.5. We’ll call them hinge creases. The hinge creases 
form the hinges between flaps.

• In the crease pattern, the hinge creases connect 
to each other to make a continuous path that either 
starts and stops on an edge or runs all the way around 
each circle.

• All of the tangent points—the points where two 
circles touch (which are labeled with dots in the 
figures)—lie at the intersections of axial creases and 
hinge creases. In the folded form, they wind up lying 
precisely on top of each other in the folded base.
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In the search for underlying principles, one looks for un-
usual coincidences. Here, we have five different bases in which 
the crease patterns display the same set of behaviors. They are 
not just coincidences; they are general principles of the circle 
method of design.

We can use these concepts to fill in the creases that go 
with an arbitrary circle-packing. There are three distinct sets 
of creases.

First, for any two circles that touch, there is an axial crease 
that runs between their centers. When the crease pattern is 
folded into a base, the axial creases are collinear—they  lie on 
top of each other. Additionally, the tangent points—the points 
where circles touch—all lie on top of each other along the axis 
in the folded base.

Second, there are hinge creases perpendicular to the axial 
creases, which emanate from the points of tangency.

Then there is a third set, which are creases that propagate 
inward from the corners of the axial polygons. In the folded 
form, these creases form the ridges of the folded shape. We’ll 
call them the ridge creases. The ridge creases bisect each of the 
angles at the corners of an axial polygon.

These three families are illustrated in Figure 10.6 for the 
Frog Base, with the three families of creases color-coded (red 
= ridge, green = axial, blue = hinge). Also shown is the folded 
form. All of the (green) axial creases run vertically and lie on 
the axis; all of the (blue) hinge creases run horizontally and so 
are perpendicular to the axis; the (red) ridge creases outline 
each of the flaps off-axis.

In most origami instruction, the only information associat-
ed with a crease is its fold angle: mountain, valley, or unfolded. 
But here we see that we can associate a new bit of information 
with each crease: its structural role within the base. That new 
information is independent of the fold angle—you can see both 
folded and unfolded axial and hinge creases in the example of 
Figure 10.6. If we want to convey both the crease assignment 
and structural role graphically, we need to distinguish lines in 
some way other than weight (unfolded versus folded) or dash 
pattern (valley versus mountain). Color provides a convenient 
new dimension (with apologies to my color-blind readers). We 
will call this a structural coloring of the crease pattern.

The three families of creases shown in Figure 10.6 are 
closely related to the circles themselves. The hinge creases are 
conceptually the easiest to understand: They outline polygons 
that approximate the circles. So each polygon outlined by hinge 
creases, which we will call a hinge polygon, delineates the 
boundary of a single flap of the base. We can see this by coloring 
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Figure 10.6. 
The three families of creases that make up a crease pattern designed 
using the circle method.

crease and circle pattern ridge creases

axial creases

hinge creases

circles

folded form

one of these polygons in the crease pattern and seeing where 
it winds up in the folded base. Several examples are shown in 
Figures 10.7 through 10.9. In each case, the colored polygon 
provides all of the layers of exactly one flap. Furthermore, all of 
the hinge creases end up collinear; they become the boundary 
between the flap and “everything else.”

© 2012 by Taylor & Francis Group, LLC



351Chapter 10: Molecules

Figure 10.9. 
A hinge polygon that becomes a 
middle flap.

Figure 10.8. 
A hinge polygon that becomes 
an edge flap.

Figure 10.7. 
A hinge polygon, outlined by 
hinge creases, becomes a single 
flap of the base. This figure 
shows a polygon that becomes 
a corner flap.

While the hinge creases are most easily related to the 
original base and circle pattern, the axial creases—the lines 
between circle centers—are just as important, but in an entirely 
different way. They, too, delineate distinct polygons, which we 
will call axial polygons.

When we collapse an axial polygon, all of its edges wind 
up collinear, because its edges must lie along the axis of the 
base. But in addition to this, all of the tangent points must 
come together at a single point. Thus, there are two properties 
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that must be satisfied by the crease pattern within an axial 
polygon: 

• Its edges, which are all axial folds, must be brought 
to lie along a single line.

• The tangent points along its boundary for each 
circle must be brought together at a single point.

The first part of this, the problem of collapsing a polygon so 
that its edges lie on a single line, is well known in both origami 
and mathematics. In mathematics, it is related to a famous prob-
lem known as the one-cut problem: How do you fold a sheet of 
paper so that with a single cut, you cut out an arbitrary polygon 
or collection of polygons? The one-cut problem was solved by 
Erik Demaine and coworkers  (see References), using a struc-
ture from computational geometry called the straight skeleton 
(which we will meet again in Chapter 13). However, the second 
requirement—alignment of the tangent points—is unique to 
origami and leads to new and specialized crease patterns.

Within the world of origami, I and several other artists 
and scientists—notably Koji Husimi, Jun Maekawa, Toshiyuki 
Meguro, Fumiaki Kawahata, and Toshikazu Kawasaki—have 
studied crease patterns that allow various polygons to be col-
lapsed with their edges falling onto a single line. It turns out 
that a relatively small set of crease patterns can be assembled 
into very large and complex tiles, indeed, into entire crease 
patterns; both those derived from circle packings, as well as 
proto-patterns derived by other methods (such as the tree 
method, which we will shortly encounter).

All origami uniaxial bases can be constructed from a small 
set of minimal tiles. The situation is analogous to that of life 
itself, wherein a small number of amino acid molecules can be 
assembled into all the proteins that make life possible and that 
make up the diversity of the natural kingdom. Because of this 
analogy, Meguro, a biochemist, has dubbed these fundamental 
tile patterns bun-shi, or molecules. In the next section, we will 
explore origami molecules. By enumerating and identifying 
the molecules of origami, we will develop the building blocks 
of origami life.

10.2. Triangle Molecules
Finding a set of creases for folding a polygon so that all of its 
edges fall on a line is actually quite easy. However, there can 
be more than one such set of creases. Choosing the set that gets 
all of the tangent points to come together can be rather difficult. 
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Meeting this second condition gets harder the more tangent 
points there are to align simultaneously, and since there is one 
tangent point for each edge of the polygon, smaller polygons 
are easier to find creases for than larger ones. Thus, let us start 
with the smallest nontrivial polygon—a triangle—and work out 
a crease pattern that meets the two conditions above.

Figure 10.10 shows an arbitrary triangle formed by three 
touching circles. If you have been folding origami for any 
length of time, you have already encountered a technique for 
collapsing all of the edges of a triangle onto a line: the humble 
rabbit-ear fold. The rabbit ear is formed by folding all three 
corners of the triangle along the angle bisectors (which meet 
at a point); one of the points is swung over to one side and the 
entire structure flattened. That any arbitrary triangle can be 
folded into a rabbit ear was noted by Justin, Husimi and Ka-
wasaki; however, the geometric relations underlying the rabbit 
ear (that the angle bisectors meet at a point and that adjacent 
triangles formed by dropping lines from the bisector intersec-
tion to all three sides are congruent) were originally proven by 
Euclid over 2000 years ago. Thus, the seeds of origami design 
were sown in antiquity.

For origami purposes, however, we need to satisfy both 
alignment conditions. It is not enough simply that the edges of 
the triangle all fall on a line. It is also essential that the tangent 
points all come together. Fortunately, it is not difficult to prove 
mathematically that for any triangle formed by connecting the 
centers of three touching circles, the rabbit-ear crease pattern 
brings together the tangent points as well.

Therefore, we now have a construction for finding the 
crease patterns for any triangular polygon; just fold a rabbit 
ear. Or, to construct the creases without folding, construct the 

Figure 10.10. 
The rabbit-ear fold brings together all edges of a triangle so that they 
lie on a line. Furthermore, the tangent points are all brought together 
to meet at a point. 
Left: crease pattern. 
Middle: folding sequence. 
Right: the folded form.
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bisectors of each angle of the triangle, which meet at a point. 
Then draw a line from the tangent point on each side to the 
intersection of the bisectors. We will call this crease pattern 
the rabbit-ear molecule.

10.3. Quadrilateral Molecules
It is heartening that the triangle was so easy. It is further heart-
ening that the most common polygon one encounters in circle-
method bases is a triangle, and in fact, for the two- through 
five-flap bases seen in the previous chapter, all of the polygons 
were triangles. Thus, using the rabbit-ear molecule, we could 
find the full crease pattern for each of these bases. Wouldn’t it 
be nice if when we diced up any circle pattern along its bound-
ary creases, the polygons always turned out to be triangles? 
Alas, such is not the case. For the very next circle pattern, the 
pattern for six equal points shown in Figure 10.11, we find that 
a four-sided polygon crops up.

Figure 10.11. 
Circle pattern for a six-pointed 
base.

The crease pattern for Figure 10.11 does contain several 
triangles. Note that the two triangles in the upper corners 
of the square have only two circles inside each triangle. Any 
polygon with fewer than three circles in it is essentially unused 
paper and can be ignored. At the bottom of the model are three 
triangles, which can be filled with rabbit-ear molecules.

But look at the polygon in the upper middle of the paper: 
the polygon is not a triangle—it is a four-sided diamond. So here 
we have a concrete demonstration that we will have to deal with 
polygons with more than three sides. Sometimes there will be 
four sides. So let us look at the problem of collapsing quadrilat-
erals so that all of their edges lie on a single line.

10.4. Waterbomb Molecule
With a triangle, there was exactly one crease pattern that put all 
of its edges onto a single line. Fortunately, this one crease pat-
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tern satisfied the tangent point condition—the tangent points all 
come together automatically. With a quadrilateral, the situation 
is a bit more complicated. For any quadrilateral that is formed 
by connecting the centers of four touching circles, the bisectors 
of the four angles all meet at a point as shown in Figure 10.12, 
which suggests one way of collapsing a quadrilateral.

Figure 10.12. 
The bisectors of a quadrilateral defined by four touching circles meet 
at a point, which permits the quadrilateral to be folded so that all of 
its edges lie on a single line.

Figure 10.13. 
For a four-circle quadrilateral, 
the sums of the lengths of 
opposite sides are equal.

a

a

b

cb
c

d

d

We call this pattern the Waterbomb molecule, because the 
folded shape and the topology of the creases are those of the 
traditional Waterbomb.

Note, however, that not all quadrilaterals can be folded 
into a Waterbomb molecule; in fact, only those formed by four 
touching circles—called a four-circle quadrilateral—can be so 
folded. This property is fairly easy to demonstrate. As shown 
in Figure 10.13, if the four circles have radii a, b, c, and d, 
then the sides of the quadrilateral are, respectively, (a + b),  
(b + c), (c + d), and (d + a). The sum of the lengths of opposite 
sides are (a + b + c + d) for both pairs of sides. We call this 
relationship the Waterbomb condition: In a four-circle quadri-
lateral, the sums of opposite sides are equal.
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Figure 10.15. 
Three identical polygons formed by four different circles.

Now, let’s see if the converse is true. In a four-circle quadri-
lateral, one whose opposite sides sum to equal values, construct 
the angle bisectors from all four corners. The two bisectors on 
the left must meet at a point; similarly, the two on the right 
must also meet at a point (which may or may not be the same 
point). Suppose they are two different points. Drop perpendicu-
lars from the two bisector intersections to the adjacent sides, 
as shown in Figure 10.14.

We label the lengths of distinct segments along the edges 
A–F as shown; since each is a distance, all six quantities are 
greater than or equal to zero. If this is a four-circle quadrilat-
eral, then the sums of opposite sides must be equal; that is,

(10–1)

This means that

E = F = 0.                               (10–2)
 
And this, in turn, implies that the distance between the 

two bisector intersections is zero, i.e., that they are the same 
point. Thus, any quadrilateral that satisfies the Waterbomb 
condition has its angle bisectors meet at a point and can be 
folded into an analog of the Waterbomb Base.

A

A

B

B C

C

D

DE

F

Figure 10.14. 
Drop perpendiculars from the 
bisector intersections to all four 
sides.

(A + B) + (C + D) = (A + E + D) + (B + F + C).
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Note that the distances A–D are not necessarily equal to 
the circle radii a–d that we started with; there are many dif-
ferent four-circle patterns that give rise to exactly the same 
quadrilateral. Three examples are shown in Figure 10.15.

Waterbomb molecule quadrilaterals have a couple of other 
interesting properties. If we draw four lines from the bisector 
intersection, each perpendicular to one of the four edges, they 
all have the same length, which means that a circle can be 
inscribed within the quadrilateral as shown in Figure 10.16, a 
property first shown by Koji Husimi, also noted by Justin and 
Maekawa.

Figure 10.16. 
A quadrilateral defined by four touching circles can have a circle 
inscribed within it that touches all four sides.

It is also quite easy to show the converse of this relation-
ship, that the vertices of any quadrilateral with an inscribed 
circle tangent to all four sides are the centers of four pairwise 
tangent circles.

If a quadrilateral satisfies the Waterbomb condition, then 
the folds of the Waterbomb Base—the four bisectors, plus the 
four perpendiculars—are uniquely specified. So there is only 
one way to collapse the quad into a Waterbomb molecule. But 
as we saw, there are many possible circle patterns that can 
give rise to the same quadrilateral. Only one particular set of 
circles has the property that the tangent points line up with 
the hinge creases, as shown in Figure 10.17.

For the rhombus that appears in the six-circle packing 
(Figure 10.11), this is also the situation: The Waterbomb mol-
ecule does not bring the tangent points together, as Figure 10.18 
shows.

Thus, even if a quadrilateral satisfies the Waterbomb 
condition, the Waterbomb molecule may not be the appropri-
ate crease pattern that brings together the tangent points. 
Fortunately, there are other quadrilateral molecules that fill 
this need.
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10.5. Arrowhead Molecule
Although the Waterbomb molecule doesn’t always bring the 
tangent points together, there are other crease patterns that 
do. One that is quite simple to construct and fold is shown in 
Figure 10.19. This pattern, described by Meguro and Maekawa, 
will always bring the four tangent points together. We call it 
the arrowhead molecule.

There is usually more than one arrowhead molecule that 
can be constructed from a given quadrilateral. In Figure 10.19, 
we started from the lower left corner; however, we could have 
as easily started from the upper right corner and derived the 
molecule whose crease pattern is shown in Figure 10.20.

A nice feature of the arrowhead molecule is that all of 
the creases are easily constructed either by computation or 

tangent pointFour points
come together

Four tangent
points come
together

Figure 10.17. 
Top: for one set of circles, the four 
tangent points come together. 
Bottom: for all other sets of 
circles, the tangent points do 
not align.

Figure 10.18.
Waterbomb molecule crease 
pattern within a four-circle 
rhombus. Note that the perpen-
diculars do not hit the tangent 
points.
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4. Bisect the remaining paper at each of
the diagonal corners.

5. Add a crease connecting two crease
intersections.

6. Add two creases emanating from the
intersection and perpendicular to the two
creases shown.

8. Assign creases to complete the crease
pattern.

7. Connect the crease intersections with
the tangent points.

9. Using these creases, collapse the shape.

10. Finished arrowhead molecule. Note
that now all four tangent points come
together.

1. Begin with the four angle bisectors.
Draw lines from two adjacent tangent
points perpendicular to the edges until
they meet at the bisector.

2. Draw lines from the intersection back
out to two diagonally opposite corners.

3. Draw two more lines each from the
corners making equal pairs of angles at
the two corners.

by folding. A drawback of the arrowhead molecule is that 
when folded, more edges than just the outer edges lie along 
the axis of the base. In fact, the creases marked in green on 
the left in Figure 10.21 also lie along the axis as well as the 

Figure 10.19. 
Construction of the arrowhead molecule.
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tangent point

Figure 10.20. 
An alternate arrowhead molecule for the quadrilateral shown in 
Figure 10.19.

Figure 10.21. 
The arrowhead molecule can be 
separated along axial creases 
into a Waterbomb molecule and 
an extra piece that lengthens 
one of the points.

edges when the molecule is folded up. We saw that in the full 
crease pattern, lines that lie along the axis of the model are 
axial creases, creases that connect the centers of touching 
circles. As shown on the right in Figure 10.21, we can think 
of the arrowhead molecule as a combination of a Waterbomb 
molecule formed from four touching circles, three out of four 
of them the right length, with the extra chevron-shaped piece 
added to bring the fourth point up to the proper length.

Any molecule that has interior creases that line up with 
the raw edges when the molecule is folded is called a composite 
molecule. A molecule with no interior creases is a simple mol-
ecule. The arrowhead molecule is a composite molecule.

Another disadvantage of the arrowhead molecule is that 
it can be asymmetric even when the underlying polygon and 
circle pattern is symmetric. Figure 10.22 shows the arrowhead 
molecule constructed within the diamond from the 6-circle 
pattern of Figure 10.11. Although the diamond and its circles 
have left-right symmetry—the right side is the mirror image 
of the left—the arrowhead molecule crease pattern (and the 
folded molecule) do not.
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For symmetric circle patterns such as the six-circle pack-
ing, using an asymmetric molecule in a symmetric polygon will 
result in an asymmetric base. This may be undesirable for a 
symmetric subject.

10.6. Gusset Molecule
The arrowhead molecule is not the last molecule for quadrilat-
erals, however. The crease pattern shown in Figure 10.23 is a 
valid crease pattern for a molecule I call the gusset molecule 
that can be oriented to preserve the underlying symmetry.

Figure 10.22. 
Crease pattern and folded form 
of the arrowhead molecule in a 
four-circle rhombus.

Figure 10.23. 
Crease pattern and folded form 
for the gusset molecule. The 
folded molecule can have its 
flaps oriented to be mirror-sym-
metric about either symmetry of 
the underlying polygon.

Like the arrowhead molecule, the gusset molecule can 
be constructed for any four-circle quadrilateral, but the gus-
set molecule has a couple of advantages over the arrowhead  
molecule. There are no interior creases that lie along the axis 
when it is folded, so it is a simple molecule. Simple molecules 
lead to bases that have fewer layers along the axis of the 
model.

The gusset molecule also has the advantage that it is 
symmetric when the underlying circle pattern is symmetric. 
For example, in the arrowhead molecule in Figure 10.22, the 
circle pattern has left-right symmetry, but the molecule does 
not have this symmetry. The gusset molecule in Figure 10.23 
has the same left-right symmetry as the quadrilateral.

The disadvantage is that the gusset molecule is a bit 
harder to construct than the arrowhead molecule. However, 
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it can be constructed by folding, using the prescription shown 
in Figure 10.24. It can also be constructed numerically, by 
using analytic geometry to compute the creases shown in 
Figure 10.24, or as we will see in the next chapter, using the 
algorithms of tree theory.

In the basic gusset molecule, the baseline of the gusset 
(indicated by the hidden line in the final step of Figure 10.24) 
is parallel to the axis. However, you can vary this angle by tip-
ping the gusset one way or the other. Several variations are 
also shown in Figure 10.25.

There is, as well, a version in which the gusset extends 
to both corners by addition of a crimp in its middle, as shown 
in Figure 10.26.

1. Begin with the four angle bisectors.
Draw lines from all four tangent points
perpendicular to the edges until the pairs
of perpendiculars adjacent to diagonally
opposite corners meet.

2. Connect the two points of intersection
with a crease.

3. Fold the crease you just made to lie
along two of the perpendiculars; crease
and unfold.

4. Repeat for the other two perpendiculars. 5. The finished crease pattern. 6. Collapse on the creases shown.

7. The finished gusset molecule.

Figure 10.24. 
Construction method for the gusset molecule.
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Figure 10.25. 
Top: crease pattern and folded form of a basic gusset molecule with 
the gusset horizontal (i.e., parallel to the axis). 
Middle, bottom: two variations with tilted gussets.

Figure 10.26. 
Crease pattern and folded form of another variant of the quadrilateral 
gusset molecule.
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Numerous other variations are also possible. My conjecture 
is that for a given quadrilateral with a specified set of tangent 
points, the basic gusset molecule is the molecule with the mini-
mum total crease length, but this has not yet been proven.

The gusset molecule is quite versatile. If you reexamine 
some of the crease patterns from the previous chapter, you will 
see a few gusset molecule patterns along with rabbit-ear and 
Waterbomb molecules.

10.7. Molecules with Rivers
When we built crease patterns from preexisting tiles, we kept 
track of flaps and connections between flaps by decorating the 
tiles with circles and rivers. Similarly, when building up a 
crease pattern via circle packing, we can insert segments into 
the base by inserting rivers into the circle packing. Breaking 
such a pattern down into molecules means that some of the 
molecules must contain rivers. The molecules we have seen 
thus far—rabbit-ear, Waterbomb, arrowhead, and gusset—have 
not contained rivers; thus, there must be additional molecules 
that apply to circle/river packings.

And there are, but most can be derived from the pure circle-
packed molecules. Let’s start with the three-circle rabbit-ear 
molecule and add a single river. The river must enter along one 
edge and exit along an adjacent edge. With no loss of generality, 
we can represent the situation as in Figure 10.27.

In Figure 10.27, the triangle is defined by three circles of 
radius a, b, and c, plus a river of width d. But viewed in isola-
tion, this is simply equivalent to a three-circle triangle, as the 

Figure 10.27. 
Left: a triangle defined by three circles plus a river. 
Middle: crease pattern. 
Right: folded molecule with two sets of tangent points.

a

a

b

b

cc

d

d

tangent points
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river can (temporarily) be absorbed into one of the circles. The 
crease pattern is the same as that for the three-circle triangle: 
the creases of a rabbit ear. The only difference is that because 
of the boundary between the river and circle, we have an extra 
set of tangent points along the flap and a set of hinge creases 
that denote the boundary in the folded molecule.

The situation is much the same in a quadrilateral when the 
river connects two adjacent edges, as in Figure 10.28. Just as 
in the triangle, the river can be absorbed into the circle it cuts 
off, and the crease pattern that collapses the quad is exactly 
the same as the pattern for the pure circle-packed version of 
the quadrilateral, with the addition of hinge creases to denote 
the boundary of the river.

Figure 10.28. 
Left: a quadrilateral defined by four circles plus a river between 
adjacent edges. 
Middle: crease pattern for a gusset molecule. 
Right: folded form with two sets of tangent points.

tangent points

I leave it as an exercise for the reader to construct the 
arrowhead molecule for this quadrilateral.

The situation is entirely new, however, if the river cuts 
across the quadrilateral, connecting two opposite sides, because 
now the river cannot be absorbed into a single circle. In fact, a 
new crease pattern arises.

The simplest pattern, shown in Figure 10.29, occurs when 
the quadrilateral and its circles satisfy some special condi-
tions.

This pattern, which we will call the sawhorse molecule, 
was described by Meguro and Maekawa; it can be folded from 
any quadrilateral quite simply, as shown in the sequence in 
Figure 10.30.

The Waterbomb molecule can be considered a special case 
of the sawhorse molecule—the limit when the central river 
goes to zero width.
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1. Fold one edge down to lie
along the opposite edge.

2. Reverse-fold the top corners
so that all edges lie along the
bottom edge.

3. Finished sawhorse
molecule.

Figure 10.30. 
Folding sequence for the sawhorse molecule.

Recall that even if a quadrilateral satisfied the Wa-
terbomb condition (sums of opposite sides were equal), the 
Waterbomb molecule wasn’t necessarily the molecule that 
aligns the tangent points. A similar situation occurs with 
the sawhorse molecule; even though you can fold any quad-
rilateral into a sawhorse molecule, the particular sawhorse  
molecule won’t necessarily make the tangent points line up. 
Figure 10.31 shows the sawhorse creases superimposed on a 
valid circle/river pattern, and it is clear that the hinge creases 
do not hit the edges at the tangent points of the circles and 
rivers.

Figure 10.29. 
Crease pattern and folded form for a sawhorse molecule.
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Figure 10.31. 
The sawhorse molecule does not 
work for most circle/river quadri-
laterals because the hinge creases 
miss the tangent points.

Figure 10.32. 
Geometric construction for the gusset molecule for a circle/river quadrilateral. Note that the hinge creases 
now hit the tangent points, which are brought together along the bottom edges of the folded form.

5. The finished crease pattern. 6. Collapse on the crease pattern.

7. The finished gusset molecule.

1. Begin with the four angle bisectors.
Draw lines from all six of the tangent
points perpendicular to the edges until
they meet at the bisector. Extend the lower
perpendiculars farther than the others.

2. Make a copy of the two lower
perpendiculars and rotate both copies
together about point A until the left one
hits point B.

3. Construct the two bisectors between
the indicated angles.

A
B

4. Add three more creases through the
given crease intersections.
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Once again, however, the gusset molecule comes to the 
rescue; it is possible to construct a version of the gusset mol-
ecule that brings all tangent points together, illustrated in 
Figure 10.32. This method is a simple geometric construction 
for the creases; a numerical prescription will be given later.

These five molecules—rabbit-ear, Waterbomb, arrowhead, 
sawhorse, and gusset—are sufficient to fill in a flat-foldable 
crease pattern for any pattern of circles and rivers that define 
a uniaxial origami base. The combination of these molecules 
with circle/river packings is called the circle/river method of 
origami design.

10.8. Crease Assignment in Molecules
I have intentionally glossed over the topic of crease assignment 
within molecules; it is now time to straighten out the issue. 
When we create a base from circles and rivers, we divide up 
the paper into distinct polygons using the axial creases; we 
can then treat each axial polygon individually, filling it in with 
the appropriate molecular pattern. The choice of molecule is 
a local choice, depending only upon the pattern of circles and 
rivers within each axial polygon. However, the assignment 
of crease parity—whether each crease is a mountain, valley, 
or unfolded crease—is global; it depends upon the overall 
structure of the object and, in particular, the arrangement 
of the various flaps. For a base whose axis is oriented verti-
cally, any given flap can be folded up or down; in addition, for 
middle flaps, there is often a choice in which layers the flap 
lies between. All of these choices give rise to different crease 
assignments.

Nevertheless, we can specify the parity of many—though 
not all—of the creases in a pattern at the local level, and it is 
often useful to make this identification as an incomplete ap-
proximation of the final crease pattern.

Examination of the molecular patterns we’ve seen thus 
far reveals some rules of thumb for the parity (mountain or 
valley) of the creases within them. Crease parity depends on 
one’s point of view, of course; the convention I have been us-
ing (and will continue to use) is that the paper is two-colored; 
crease patterns are viewed from the white side of the paper, 
and the model is folded so that the color ends up on the outside 
(visible surface) of the model.

Under this convention, within any molecule, the ridge 
creases—those creases that extend inward from the corners—
are always valley folds, as an examination of the molecules in 
the previous section will show.
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In a gusset molecule, the boundaries of the gusset are also 
ridge creases and thus are valley folds. The base of the gusset, 
which we call a gusset crease, is always a mountain fold.

The hinge creases, however, are highly variable; they can 
be mountain, valley, or unfolded creases, depending on the 
orientation of the flaps of the molecule. Figure 10.33 shows 
several perfectly valid crease assignments for the hinge creases 
within a single gusset molecule.

Figure 10.33. 
Six possible valid crease assignments for the hinge creases in a gusset 
molecule.

You might try folding up these four patterns and observing 
the differences in the folded forms. The choice of crease parity 
for the hinge creases affects the orientation of the flaps. Since, 
in a complete crease pattern, most flaps encompass portions of 
several different molecules, the choice of crease parity within 
a given molecule cannot be made in isolation, but only after 
deciding the flap orientation in the full pattern.

When constructing a crease pattern from molecules, it is 
helpful to assign the creases in two steps. We will first define a 
generic form for each molecule in which we apply the structural 
coloring scheme first introduced in Figure 10.6 (ridge = red, 
axial = green, hinge = blue, and adding gusset = gray). This 
way of drawing a crease pattern highlights the structural role 
of each crease and its position and orientation in the folded 
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form. But also, knowing the probable crease assignments, we 
can, in a single crease pattern, give a broad hint of the crease 
assignment by adopting three simple rules:

• all ridge creases are valley folds except those at 
axial reflex vertices, which are mountain folds;

• all gusset baselines are mountain folds; and

• all hinge creases are shown as unfolded creases 
(since they could go either way).

The generic forms of all of the molecules we have seen are 
shown in Figure 10.34.

It is a curious fact that the generic form of a molecule isn’t 
actually flat-foldable as drawn; but I find the structural form 
as illuminating, if not more so, than the true crease pattern. 
The true crease assignment varies depending on the specific 
flap orientation, which is often not important. What is very 
important when one is attempting to assemble a molecule, 
or a base, is to know where each crease ends up in the folded 
form. And so it is often more useful to know whether a crease 

Figure 10.34. 
Generic form of molecules. 
Top row: rabbit-ear, Waterbomb, and sawhorse molecules. 
Bottom: arrowhead and gusset molecules. Note the ridge crease 
that is a mountain fold at the axial reflex vertex in the arrowhead 
molecule.
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is an axial crease, ridge crease, or hinge crease, than to know 
whether it is specifically mountain or valley. Given the hints on 
folding direction provided by the dashing pattern, the generic 
form alone is often sufficient information to figure out how to 
fold the entire base.

Molecules do not occur in isolation, of course; they are 
agglomerated into tiles and entire crease patterns. In such 
macro-structures, molecules are joined edge-to-edge by axial 
creases that must also have their parity assigned. Usually—
but again, not always—the axial creases are mountain folds, 
and so, in the structural representation, they will always be 
drawn that way.

The exception to the “axial = mountain” rule arises when 
molecules completely surround a vertex in the interior of the pa-
per; then it will be necessary to change one of the axial creases 
to a valley fold or, equivalently, assign two of the axial creases 
to be unfolded creases. This follows from a relatively famous 
formula witin origami derived independently by Maekawa and 
Justin, which states: 

 
                               (10–3)

That is, around any flat-folded interior vertex, the differ-
ence between the number of mountain folds (M ) and valley 
folds (V ) is ±2, with the choice of sign being made based on 
whether the folded vertex is concave (+2) or convex (–2) from 
the viewpoint of the observer.

If N molecules come together at an interior vertex, each 
contributes one ridge and one axial crease. The N ridges must 
all be valley folds, which means that of the N axial creases, 
N – 2 must be mountain folds and 2 must be unfolded, or 
N – 1 are mountain folds and 1 is a valley fold.

It is helpful to define a generic form for entire crease pat-
terns, just as we do for individual molecules, in which all axial 
creases are shown as mountain folds, whether they connect 
to interior vertices or not. A generic form crease pattern for a 
uniaxial base has all axial creases assigned as mountain folds; 
all gusset creases are mountain folds; all ridge creases are 
valley folds; and all hinge creases are unfolded creases. While 
such a crease pattern is not, as a rule, flat-foldable, all that is 
needed to make it flat-foldable is to change the assignment of 
a handful of creases; no new creases are added. I find that in 
working out a design, the generic form of the crease pattern 
actually conveys the assembly of the base more clearly than 
the literal crease pattern would, for in the process of folding, 
one tends to flip the flaps back and forth and rearrange layers 

V – M = ± 2.
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to suit aesthetic purposes. While every such change alters the 
literal crease pattern, the generic crease pattern for such mi-
nor variants of a base remains unchanged. And so, I will often 
give only the generic form of the crease pattern for molecules 
and models that follow.

10.9. Putting It All Together
We now have all the building blocks necessary to build a custom-
made base from scratch, starting with the desired number, 
lengths, and connections among flaps. Let’s work through such 
a model in detail. We’ll choose an orchid blossom, which offers 
some interesting challenges but isn’t too complicated.

Orchids come in an enormous variety. I’ll pick a fairly 
common form. Figure 10.35 shows a sketch of an orchid blos-
som. Orchids typically have six petals plus a stem, but in 
many species, one of the petals is heavily modified. In the 
variety I’ve chosen, the bottom petal grows two distinct pro-
trusions partway out the sides of the petal, and we’ll include 
these as distinct flaps in the desired base. We can represent 
the desired configuration of flaps by a stick figure, as shown 
on the right.

Now, let’s count the flaps. There are five similarly-sized 
flaps for the ordinary petals, a sixth flap for the stem, then three 
smaller flaps that make up the composite petal. Those flaps are 
separated from the others by a short segment. Thus, our crease 
pattern will be made up of six large circles, three smaller circles, 
and a relatively narrow river, as shown in Figure 10.36.

Now comes the fun part: How can we pack these items into 
a square in an efficient way? Recall that (a) the centers of all 
circles must be confined to the square and (b) circles and rivers 
must be connected in the same way that they are connected in 
the stick figure, which is to say that two circles may only touch 
in the crease pattern if their corresponding sticks touch at a 
node. If you like something concrete, you can cut out circles 

Figure 10.35. 
Left: an Orchid. 
Right: its representation as a 
stick figure.
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Figure 10.37. 
Left: a circle/river pattern for the Orchid. 
Right: the circle pattern with axial creases added where circles and 
rivers touch.
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Figure 10.36. 
The circles and river that correspond to the elements of the stick 
figure of the Orchid.
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and slide them around within the circle jig shown previously; 
I usually just draw sketches. A bit of manipulation reveals an 
elegantly symmetric arrangement of circles and rivers, shown 
in Figure 10.37.

There is certainly some variation possible in the sizes of 
the circles and width of the river; we could certainly adjust 
the circles’ sizes (and thus, flap lengths) up or down by a small 
amount without limiting our ability to create a recognizable 
orchid. So, once we draw in the axial creases (along lines where 
the circles and rivers touch), we can choose the circle sizes to put 
all axial creases at multiples of 15°—which will make it easier 
to fold, since 15° is a quarter of the easily folded 60°. Another 
benefit of this choice of circle size will soon become apparent.

But first, let’s take stock of what we have accomplished 
with this packing. There are four identical quadrilater-
als that are circle-plus-crossing-river type. These can be 
filled by either the sawhorse molecule (if we’re lucky) or 
gusset molecule (if we’re not). On the sides, we have two 
triangles of the circle-plus-river type; we can fill these in 
with rabbit-ear molecules. The rest of the paper is taken 
up by four triangles at the four corners of the square; since 
these triangles only contribute to two flaps each, they 
are essentially unused, and we can fold them underneath  
and ignore them (or pull them out later in the model if a new 
use arises).

With regard to the quadrilaterals, the choice of a 15° ge-
ometry was lucky (or inspired) because it allows us to use the 
much simpler sawhorse molecule in the crease pattern. Filling 

Figure 10.38. 
Generic form of the filled-in 
crease pattern.
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in all six molecules with the generic form of their creases gives 
the pattern shown in Figure 10.38.

Generic form crease patterns are not flat-foldable, but they 
contain all the creases necessary to make a flat-foldable base. 
At this point, the easiest way to finish the crease assignment is 
to actually cut out, precrease, and fold the structural pattern, 
making decisions about flap orientation as you fold. One pos-
sible arrangement of flaps is shown in Figure 10.39 with the 
corresponding crease pattern with proper crease assignment 
and the completed base.

You will find that this base contains all of the flaps we 
set out to fold. Of course, they are quite wide (the two petal 
protrusions are easy to overlook) but conventional narrowing 
techniques (e.g., multiple sinks) can turn them all into distinct 
flaps. Once the flaps are in place, the base can be turned into 
the desired orchid subject in many ways; my own version is 
shown in Figure 10.40. Folding instructions are given at the 
end of the chapter.

Let’s do another. This time, we’ll do another insect. A 
fairly simple ant has six legs, head, thorax, and abdomen, with 
antennae attached to the head. A simple stick figure of an ant 
with all these features is shown in Figure 10.41.

From the stick figure, we can see that we’ll need six circles 
for legs, another circle for the abdomen, a river for the connection 

Figure 10.39. 
Fully assigned crease pattern and folded base.
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between the legs and head, two smaller circles for the antennae, 
and an even smaller circle for the rest of the head.

Again, there are many possible configurations, depending 
on the specific sizes of the circles and rivers and their relative 
arrangements, but a fairly straightforward configuration is 
shown in Figure 10.42. Connecting the centers of touching 
circles with axial creases defines the polygons that we will fill 
in with molecules.

This pattern gives four triangles and two quadrilaterals. 
This time all four of the corners of the square go unused (a not 
uncommon occurrence with circle-packed designs). In the tri-
angles, we have no choice: They receive rabbit-ear molecules. In 
the quadrilaterals, this time they don’t satisfy the conditions for 
the Waterbomb molecule, so we can use either the arrowhead 
or gusset molecule.

Figure 10.40. 
Crease pattern, base, and folded model of the Orchid.

Figure 10.41. 
A stick figure of an ant.
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There is no particular symmetry that would favor the 
gusset molecule, and the arrowhead molecule allows us to shift 
some extra paper toward the flap that eventually becomes the 
abdomen, so I chose the arrowhead molecule in my own design. 
(You might wish to try both yourself and see which you prefer.) 
The generic form crease pattern, resulting base, and a model 
folded from this base, are shown in Figure 10.43.

Figure 10.43. 
Generic form crease pattern, base, and folded model of the Ant.

Figure 10.42. 
Left: circle/river pattern for an ant. 
Right: pattern with axial creases added.

© 2012 by Taylor & Francis Group, LLC



378 Origami Design Secrets, Second Edition

Figure 10.44 shows one more insect design and a small 
challenge. This Cockroach, like the Ant, contains six legs and 
antennae, but I’ve added two more rivers (which create gaps 
between the pairs of legs) and varied the leg length. Can you 
reconstruct the stick figure from which this design is derived? 
Second, can you identify the axial creases and the types of 
molecules I used? And last, given the structural crease pattern 
here, can you figure out the crease assignment and fold the 
base? (If not, references with folding instructions for both this 
model and the Ant are given in the References.)

10.10. Higher-Order Polygons
We now have molecules for triangles, which are common, 
and quadrilaterals, which are occasional. What about higher- 
order polygons? Might we ever see a pentagon, hexagon,  
heptagon, or larger?

Yes indeed; in fact, we have already seen one such example. 
If we choose to design a base with five equal flaps and require 
that all flaps come from the edge of the paper, we will arrive at 
the circle packing shown in Figure 10.45. Connecting the centers 
of touching circles with axial creases yields a single primary 
polygon with five sides. And had we desired six edge flaps, we 
would have ended up with a six-sided polygon. So we do indeed 
need to worry about molecules for higher-order polygons.

Figure 10.44. 
Generic form crease pattern, base, and folded model of the Cock-
roach.
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Figure 10.46 shows a generic form crease pattern for this 
five-circle polygon, which yields a five-flap molecule. It is very 
similar to the quadrilateral gusset molecule, which suggests 
that, perhaps, there is a pentagonal gusset molecule as well.

Figure 10.46. 
Generic form crease pattern for 
a five-circle molecule.

In fact, for five identical circles, there are many pentagonal 
gusset molecules, which depend on the specific arrangement 
of the circles. Figure 10.47 shows three such molecules, which 
are obtained by slight perturbations to a packing of five circles 
into a square. Unfortunately, there does not appear to be a 
simple way to geometrically construct the molecule from the 
circle packing; in fact, it isn’t even clear where the gussets go 
to allow the pentagon to collapse with its edges on a line and 
the tangent points aligned. (The patterns in the figure were 
computed numerically—we will see how to do this later on.) 
Furthermore, relatively slight changes in the arrangement of 
the circles can make significant changes in the arrangements 
of the creases and gussets.

The explosion of possibility for five and higher numbers of 
sides is worrisome. Fortunately, it isn’t necessary to enumerate 
all unique molecules for higher-order polygons; there is a way 
to transform any higher-order polygon into a combination of 

Figure 10.45. 
A five-circle base with all five 
circles on the edge of the square 
yields an axial polygon with 
five sides.
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triangle and quadrilateral molecules—what we called composite 
molecules. The basic idea is very simple. The paper that lies 
between the circles is, in a sense, unused. We can make use of 
it by adding a new circle of our own, as shown in Figure 10.48. 
Think of the existing circles as rigid disks; we add a small 
circle, then inflate it until it hits its neighbors. Once the circle 
contacts three others, it creates three new axial creases, which 
break down the higher-order polygon into several lower-order 
polygons.

Because a new circle has three degrees of freedom—the 
two coordinates of its center and its radius—you can always 
expand a circle until it hits at least three of its neighbors. (In 
Figure 10.48, because of the symmetry, we can actually get the 
new circle to touch four neighboring circles). When two circles 

Figure 10.47. 
Three pentagonal circle packings and the associated generic form 
crease patterns that collapse them. Note how the gussets vary among 
the three patterns.

Figure 10.48. 
Left: add a circle and expand it until it hits its neighbors. 
Center: when the circle touches its neighbors, add axial creases be-
tween touching circles. 
Right: fill in the resulting triangles and quadrilaterals with rabbit-
ear and gusset molecules.
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Figure 10.49. 
Left: circle packing for a fifteen-flap base and axial creases. 
Right: adding more circles breaks the pentagons into quads and 
triangles.

touch, we add new axial creases. In the example shown, this 
has the result of dividing the pentagon into three triangles 
and a quadrilateral, all of which we know how to fill with  
molecules.

This technique always works and can be repeated over and 
over. Suppose we have a polygon with N sides. A circle added 
in the middle can always be expanded until it touches at least 
three others. If the three touched circles are consecutive, you 
will create two triangles and another N-gon, which is no help. 
But there is always more than one way to add another circle, 
and if the three touching circles are not consecutive, then the 
largest polygon remaining will have at most N – 1 sides, thereby 
simplifying the problem. Repeatedly applying this process to 
every polygon of order five or larger will result in a pattern of 
axial creases consisting entirely of triangles and quadrilaterals, 
which can be filled in with rabbit-ear, arrowhead, gusset, and 
(where appropriate) Waterbomb molecules.

An interesting unsolved problem in circle-packed origami 
design is to prove that for any N-gon of touching circles with 
N > 4, it is always possible to add a circle touching at least 
three others so that the largest resulting polygon has, at 
most, N – 1 sides. It is possible to find arrangements where 
the addition of a circle leaves an N-gon, but in all the cases 
I’ve examined, there has been another circle arrangement 
that takes the largest polygon down a notch.

© 2012 by Taylor & Francis Group, LLC



382 Origami Design Secrets, Second Edition

It is tempting to think that we could keep applying the 
process to quadrilaterals and thereby reduce every uniaxial 
base to a collection of rabbit-ear molecules, but quadrilater-
als turn out to be special. If you add a circle to the center of 
a quadrilateral that touches three of the four circles, you will 
end up with two triangles and another quadrilateral. So it’s 
not possible, in general, to take a circle packing crease pattern 
down to consist entirely of rabbit-ear molecules by adding circles 
without altering any of the existing circles.

Thus, in the circle packing in Figure 10.49—which cor-
responds to a diagonally symmetric base with thirteen equal 
flaps and two slightly longer flaps at the sides—the axial creases 
outline triangles and four pentagons. By adding another circle 
(meaning another flap) to each pentagon, each can be broken 
down into two quadrilaterals and a triangle.

Now all polygons can be filled in with molecular 
creases, giving the generic form crease pattern shown in 
Figure 10.50.

Figure 10.50. 
Generic form crease pattern for 
the fifteen-flap base, filled in 
with molecules.

I shall leave it as another challenge to you to fold this pat-
tern into a base. It is not easy, given all of the middle flaps, but 
you can easily derive the proportions by folding alone; many of 
the key lines propagate at multiples of 22.5°.

You might wonder, what would one ever make from a 
fifteen-flap base? I have used this circle packing for a flying 
Eupatorus gracilicornis (a horned beetle), although instead of 
breaking up the axial polygons in this way, I used a pentagonal 
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Figure 10.51. 
Crease pattern, base, and folded model of the Eupatorus gracil-
icornis.

analog of the arrowhead molecule. You might enjoy comparing 
the crease pattern in Figure 10.51 with the one in Figure 10.50 
and attempting to fold a model from both.

Figure 10.51 is a packing consisting entirely of circles, but 
as we have seen, we can use molecules for packings of circles 
and rivers. Figure 10.52 shows a crease pattern for a Silverfish 
that includes several rivers; nevertheless, all of the molecules 
are combinations of rabbit ear, gusset, and Waterbomb mol-
ecules. As practice, you might try identifying the axial, ridge, 
and gusset creases from the hints provided by the packing 
circles. A folding sequence is provided for this one at the end 
of the chapter.

The circle/river method of designing origami is extremely 
powerful. By packing circles and rivers into a square, you are 
guaranteed all the flaps you need; by using molecular crease 
patterns to fill in the axial polygons created by your packing, 
you are guaranteed a flat-foldable base. Using these and similar 
techniques, origami artists have created designs of unbeliev-
able complexity. These techniques are at their best when the 
subject has many long, skinny appendages; insects, spiders, 
and other arthropods are prime candidates. The 1990s saw 
the flowering of these techniques in both the West and Japan, 
and launched an informal trans-Pacific competition known 
as the Bug Wars, in which at every origami exhibition, the 
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chief architects of these techniques showed off their latest and 
greatest winged, horned, antennaed, and sometimes spotted 
and striped creations. It was an entomologist’s delight (and 
an arachnophobe’s nightmare), and the contest is still going 
on with new revelations every year.

In circle/river-method designs, the packing of the circles 
and rivers into the square is still a bit ad hoc; the designer 
must shuffle circles on paper (or actually manipulate card-
board circles) to find an efficient arrangement; but there is no 
particular prescription for finding an efficient arrangement, 
let alone the most efficient arrangement. Circles and rivers 
are a wonderful tool for visualizing paper usage, but they can 
also be a distraction from some of the underlying principles. 
By reintroducing a concept we have already seen—the stick 
figure or tree—and building connections between properties of 
the tree and the crease pattern directly, in the next chapter we 
will be able to construct rigorous mathematical tools that al-
low the numerical solution of both locally and globally efficient 
crease patterns.

Figure 10.52. 
Crease pattern, base, and folded model of the Silverfish.
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Folding Instructions

Orchid Blossom

Silverfish
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1. Begin with a square, colored side
up. Fold and unfold in half vertically
and horizontally.

2. Fold the bottom edge up to touch
the midpoint of the right edge; the
crease hits the midpoint of the left
edge, but don’t make it sharp in the
left half of the model.

3. Fold and unfold. 4. Unfold. 5. Repeat steps 2–4 on the other three
corners. Turn the paper over.

2–42–4

2–4

Orchid Blossom
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6. Fold each corner inward along a
diagonal crease that connects two
crease/edge intersections; make each
crease sharp only where shown.

7. Make two more creases that
connect pairs of crease intersections.

8. Fold four corners inward.

9. Fold a Waterbomb Base, but only
make the creases sharp in the middle
of the paper.

10. Squeeze the sides inward, gather
the excess paper in the middle and swing
it over to the right. Repeat behind.

11. Reverse-fold the corner
inside.

12. Reverse-fold the inside
edge along the center line.

13. Swing one flap over to
the left.

14. Repeat steps 11–13 on
the right and on both sides
behind.

11–13 11–13

11–13
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15. Fold and
unfold.

16. Fold the corner
to the crease you just
made and unfold.

17. Fold and
unfold.

18. Open-sink
in and out.

19. Swing the flap to
the side and repeat
steps 15–18 on the
right. Repeat on both
sides behind.

15–18
15–18

15–18

20. Fold the corner
down along a crease
aligned with the
edges behind.

21. Fold the corner
back up so that the
raw edges line up
with the crease you
just made.

22. Fold the corner
over along the
center line of the
model.

23. Unfold to
step 20.

24. Reverse-fold the
corner in and out on
the existing creases.

25. Repeat
steps 20–24
behind.

26. Fold two layers to
the right in front and
two to the left behind,
spreading the layers
symmetrically.

29. Stretch the
middle pair of edges
on each side apart
slightly; the model
will not lie flat.

28. Open out the
two flaps to
form small
cups.

27. Reverse-fold the
two hidden corners out
to the sides. (There are
three layers in each; it
doesn’t matter how you
divide the layers, but
divide them both the
same way.)

20–24
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1/2

31. Fold the model in
half (except for the top,
which stays rounded).
Rotate 1/2 turn.

30. Pleat the edges to
take up the excess
paper, press the layers
of the tip together, and
round it into a bowl.

32. Reverse-fold three
flaps together as one.

33. Pull out four loose
corners completely.

34. Fold the corners
over and over on
existing creases.

35. Squash-fold five flaps
(all but the middle flap) to
stand out perpendicularly to
the other layers.

36. Narrow the stem with
mountain folds.

37. Pinch the stem to narrow
it further. Spread the small
flaps in front to the sides.

38. Reverse-fold the tips of
the five flat petals. Shape
the flower.

39. Finished Orchid
Blossom.
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Silverfish

1. Begin with a square, color up.
Fold and unfold all the way along
one diagonal and only the outer
thirds of the other.

2. Fold and unfold, making a pinch
halfway along the right edge.

3. Fold the bottom left corner to
the mark you just made and make
a pinch along the bottom edge.

4. Fold the bottom left corner to
the mark you just made and make
a pinch along the bottom edge.

5. Fold and unfold two corners.
Each corner touches a crease while
the fold line goes through the mark
you just made.
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6. Add two more folds on the other
two corners. Turn the paper over.

7. Fold and unfold along four angle
bisectors. Turn the paper back over.

8. Fold and unfold.

9. Fold and unfold. 10. Fold the corner up, making the
fold sharp only between the
indicated crease intersections.

11. Mountain-fold the model in
half.

12. Fold and unfold. 13. Squash-fold. 14. Petal-fold. 16. Unfold to step
12.

15. Fold and unfold.
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18. Unfold completely. 19. Fold and unfold. Turn the paper
over.

17. Fold and unfold.

20. Crease four angle bisectors.
Fold the two side corners in.

21. Turn the paper over. 22. Collapse the paper on the
creases shown.

23. Spread the layers and
flatten the paper.

24. Squash-fold. 25. Reverse-fold the
edge.

26. Squash-fold.

© 2012 by Taylor & Francis Group, LLC



393Chapter 10: MoleculesFolding Instructions: Silverfish

27. Fold the point down
and spread-sink the corner.

28. Reverse-fold the
point upward.

29. Bring some layers
to the front.

30. Fold the flap
down.

31. Turn the paper over. 32. Fold a flap to the left.

24–30

33. Repeat steps
24–30 on this side.

34. Fold one layer to
the left in front and one
to the right behind.

35. Open out the pocket.
Watch the marked spot
through the next few steps.

36. Spread the
interior layers
symmetrically.

37. Pop the inner corner upward;
squeeze the excess paper and
swing it over to the left.

38. Turn the paper over.

39. Fold and unfold. 40. Spread-sink the flap
symmetrically.

41. Spread the top layers
symmetrically.

42. Squeeze the sides and
the flap and swing the
excess paper to the left.
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43. Fold the flap to the
right.

44. Reverse-fold the
edge.

45. Pull out some
paper, making the
layers symmetric.

46. Squash-fold.

47. Squash-fold. 48. Reverse-fold the
edges.

49. Fold one layer
to the right.

50. Fold up one
flap.

51. Spread-sink the
corner.

52. Fold the flap
back to the right.

53. Fold the flap
down, stretching out
a pocket.

54. Fold the flap
back to the left.

55. Repeat steps
49–53.

49–53

56. Repeat steps
47–55.

47–55

57. Turn the model
over.

58. Fold the flap
over to the right.
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59. Reverse-fold the
edge.

60. Pull out some
paper to make the
layers symmetric.

61. Squash-fold the
flap.

62. Petal-fold the
flap.

63. Fold the flap
back down.

64. Fold the flap up. 65. Release some
paper.

66. Squash-fold the
flap over to the left.

67. Pull out some
loose paper.

68. Open out the
flap.

69. Fold the corner
underneath.

70. Bring the
corners together.

71. Squash-fold the
edge.

72. Inside petal-fold
the edge.

73. Fold and unfold. 74. Sink the edges.
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85. Bring the two points
to the vertical crease.

75. Turn the model
over.

76. Fold down a
point.

77. Bring a point to
the front.

78. Fold and unfold.

79. Fold the sides in. 80. Fold and unfold
along creases aligned
with the ones you made
in step 78.

81. Unfold. 82. Fold a group of
layers to the right.

83. Fold and unfold. 84. Fold and unfold. 86. Fold and unfold.
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98. Repeat on
the right.

87. Fold and unfold. 88. Unfold. 89. Fold one flap over
to the right.

90. Crease through all
layers.

91. Open out the model
to be symmetric again.

92. Repeat on the right.

82–91

93. Open-sink every corner
(eight on each side) in and
out to the same depth.

94. Turn the
paper over.

95. Fold some
layers to the
right.

96. Fold a thick
flap down.

97. Close the
model back up.

95–97

99. Flip the top small
point down and fold a
group of flaps up in front.
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100. Reverse-fold the top
four points out to the sides;
mountain-fold the bottom
pair out to the sides.

101. Narrow the legs
with mountain and
valley folds.

102. Turn the
model over.

103. Narrow the antennae
with mountain folds.
Narrow the bottom point.

104. Fold two small points
at the top out to the sides.
Narrow two long points at
the bottom.

105. Fold a flap up
at the top and a flap
down at the bottom.

106. Spread-sink the
point, pleating an upper
layer to take up the slack.

107. Pleat the head
downward. Fold the tip
of a flap underneath.
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108. Flatten a point,
pleating the upper layer.

109. Sink two corners.
Mountain-fold a flap
underneath.

110. Pleat the body. Adjust
the pleat widths so that the
visible segments after
pleating taper slightly in
width toward the tail.

111. Round and taper
the body. Dent the neck
on each side.

112. Thin and spread all
the antennae and feelers:
four at the top, five at the
bottom.

113. Pinch the legs to
narrow them further.

114. Shape the legs. 115. Finished Silverfish.

© 2012 by Taylor & Francis Group, LLC





401

11
his section describes the mathematical ideas that 
underlie the tree method of origami design, which 
is a mathematical formulation of the geometric 
concepts that I have introduced somewhat ad hoc 
over the last few chapters, culminating in the 

circle/river/molecule method for designing uniaxial bases. The 
tree method does exactly the same thing—and indeed, utilizes 
molecules for the generation of the final crease pattern—but 
casts the problem in a form that is a bit less intuitive, perhaps, 
but is both more rigorous and is more amenable to numerical 
solution.

In the circle/river method, we represent flaps and connec-
tions between flaps by circles and rivers on a square of paper; 
we then connect the centers of touching circles to create axial 
polygons, which, in turn, are filled in with molecules or are 
subdivided by adding new circles and then filled in. The process 
gives a generic-form crease pattern for a base with the appro-
priate number, size, and configuration of flaps.

The weak point in this process was the original packing of 
circles and rivers; circle packings are relatively straightforward, 
but when we start adding rivers, the problem can get very com-
plicated due to the many ways that rivers can meander among 
the circles. In tree theory, we avoid this problem by dispensing 
with circles and rivers entirely. Instead, we build a connection 
directly from a stick figure representation of the desired base 
to the crease pattern itself.

11.1. The Tree
We have already introduced the idea of using a small stick figure 
as a shorthand way of describing a base. The stick figure captures 

Tree Theory
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the number of flaps, their lengths, and how they are connected 
to each other. Using a term from graph theory, we will call such 
a stick figure the tree graph for a given (or postulated) uniaxial 
base, or just tree for short. A tree graph consists of edges (line 
segments) and nodes (ends of line segments).

We will also divide the nodes into two types: leaf nodes 
are nodes that come at the end of a single edge. Leaf nodes 
correspond to the tips of legs, wings, and other appendages. 
Nodes formed where two or more edges come together are called 
branch nodes. Similarly, a leaf edge is an edge that ends in at 
least one leaf node; a branch edge is an edge that ends in two 
branch nodes. These are illustrated in Figure 11.1.

Figure 11.1. 
Parts of a tree graph.
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In the stick figure we drew in previous sections, the length 
of each segment was equal to the length of the flap or connector 
that it corresponded to. In a tree, we will label each edge by a 
weight, which is the numerical length of the corresponding flap. 
It is helpful to draw the tree with each edge length proportional 
to its weight, and so I will continue to do so. Thus, in the tree 
in Figure 11.1, each of the edges has weight 1, meaning that 
each corresponds to a flap or connector of unit length.

Now, the definition of a uniaxial base was a base that 
could be oriented so that (a) all flaps lie along a common line 
(the axis), and (b) the hinges between flaps were perpendicular 
to the axis. The perpendicularity of the hinges is an important 
property; it allows the flaps to be manipulated in three di-
mensions so that the edges of all flaps lie in a common plane, 
as shown for a hypothetical base in Figure 11.2. We refer to 
this plane as the plane of projection. Put formally, the plane 
of projection of a base is a plane that contains the axis of the 
base and the axial edges of all flaps, and that is perpendicular 
to the layers of the base.

This property allows another interpretation of the tree 
graph: It is the shadow cast by the base in a plane perpendicular 
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to the layers of the base, as shown in Figure 11.2. This analogy 
can only be pushed so far, however. In many uniaxial bases—
even one as simple as the Bird Base—some flaps are wrapped 
around others in such a way that the shadows of individual 
flaps are unavoidably overlapping. The true shadow would 
show fewer segments than the number of edges possessed by 
the actual tree. To avoid such ambiguities, I will always show 
a tree with edges (and nodes) distinctly separated, as shown 
in Figure 11.3.

This point emphasizes another ambiguity about trees: 
There is no particular significance to the orientation of the 
edges of the tree graph. All that matters are the edge weights 

Figure 11.2. 
Schematic of a hypothetical 
uniaxial base for an animal with 
four legs, a head, body, and tail. 
It’s a uniaxial base if it can be 
manipulated so that all of the 
flaps lie in a common plane and 
all of the layers are perpendicu-
lar to the plane. The shadow of 
the base consists entirely of 
lines.
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Figure 11.3. 
Left: shadow cast by a Bird Base. The shadows of wrapped flaps are 
superimposed. 
Right: base and schematic tree. The shadow is perturbed to distinguish 
flaps that are wrapped around one another.
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and their connections. In particular, a tree graph does not 
specify whether all of the flaps in its corresponding base can 
be spread apart as in Figure 11.2 or some are wrapped around 
others as in Figure 11.3.

The tree graph is a schematic form that captures some of 
the essential characteristics of a base: the number of flaps, the 
length of the flaps, how they are connected to one another. It 
does not capture, however, the width of the flaps, nor which 
flaps, if any, are wrapped around others. Nevertheless, in 
many cases, it is sufficient for a successful origami design to 
have a base with the same attributes as those conveyed by 
the tree graph.

11.2. Paths
Suppose that we have a uniaxial base folded from a square 
and that we construct its tree graph. If we unfold the base, 
we get a square with a crease pattern that uniquely defines 
the base. The act of projecting the base into a plane—casting 
a shadow—can be thought of as defining a mapping between 
points on the square and points on the tree. In the language 
of mathematics, it is a surjective or onto mapping—that is, for 
every point on the square there is a corresponding point on the 
tree, but more than one point on the square can map to the 
same point on the tree.

That the mapping is not one-to-one is clear from Figure 11.3; 
wherever you have vertical layers of paper, there are many points 
on the base that map to the same point on the tree. However, if 
the flaps come to sharp points, then at the leaf nodes of the tree, 
there is exactly one point on the square that maps to the node. 
Thus, for each flap of the base, we can identify a unique point 
on the square that becomes the tip of the flap.

A sharp point must be formed by several creases that come 
together at the point. Thus, there is a vertex in the crease pat-
tern at this point. Such a vertex maps one-to-one to a leaf node 
of the tree; we therefore call it a leaf vertex.

Let us resurrect the shy bookworm from Chapter 5; recall 
that this bookworm travels entirely within a sheet of paper 
between the two surfaces, never leaving one sheet or crossing 
from one sheet to another. Suppose the bookworm were sitting 
at the tip of one of the legs of the base and wished to travel to 
another part of the base—say, the tail—without leaving the 
paper, as shown in Figure 11.4. It would have to crawl down the 
foreleg to the body, down the body, and back out the tail. The 
distance it traveled would be (length of the foreleg) + (length 
of the body) + (length of the tail).
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Now, let’s think about what the path of the bookworm would 
look like on the unfolded square, as shown in Figure 11.5 (you can 
imagine dipping the bookworm into ink so that it leaves a trail 
soaking through the paper as it crawled). Clearly, it starts and 
ends at a leaf vertex. On the square, the path might go directly 
from one leaf vertex to the other, or it might meander around 
a bit, or it might even backtrack. If it travels via the shortest 
route, then the path length on the square is equal to the length 
as measured along the bottom of the base. Any meandering 
or backtracking will make the path longer. Thus, the distance 
traveled on the unfolded square must be at least as long as the 
minimum distance traveled along the base.

Figure 11.4. 
A bookworm wishes to go from a 
foreleg to the tail along the base. 
It can take several different 
paths, but the most direct path 
is the path that lies in the plane 
of projection.

Figure 11.5. 
The trail of the bookworm.

leaf vertex
(tail)

leaf vertex
(foreleg)

This illustrates an extremely important property of any 
mapping from a square to a base: Although our example went 
from one leaf vertex to another, the property is general: The 
distance between any two points on the square must be greater 
than or equal to the distance between the two corresponding 
points on the base.
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Since the tree graph is the shadow of the base, distance 
along the bottom of the base is the same as the distance mea-
sured along the tree graph. Thus, the distance between two leaf 
vertices on the square must be at least as large as the distance 
between the corresponding two leaf nodes as measured along 
the edges of the tree. If the path on the tree graph doubles 
back or has any uphill or downhill component, as illustrated 
in Figure 11.6, the distance between the leaf vertices must be 
absolutely larger than the distance on the graph.

Figure 11.6. 
A straight path on the square maps to a path in the base that may 
have uphill (and/or downhill) components.
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And in particular, this relationship must hold for any two 
points on the base that correspond to nodes on the tree. Now 
while this condition must hold for any pair of points on the 
base, it turns out that if it holds for every pair of leaf nodes, 
it will hold for every pair of points on the base. That is, if you 
can identify a set of points on the square corresponding to all 
of the leaf nodes of a tree—the leaf vertices—and the leaf ver-
tices satisfy the condition that the distance between any pair 
of them is greater than or equal to the distance between the 
corresponding nodes as measured on the tree, then it is almost 
always guaranteed that a crease pattern exists to transform the 
square into a base whose projection is the given tree.

This is a remarkable property. It tells us that no matter 
how complex a desired base is, no matter how many points it 
may have and how they are connected to one another, we can 
always find a crease pattern that transforms the square (or 
any other shape paper, for that matter) into the base. Putting 
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this into mathematical language, we arrive at the fundamen-
tal theorem of the tree method of design (which I call the tree 
theorem for short): 

Define a simply connected tree T with leaf nodes Pi, 
i = 1, 2,…N. Define by lij the dis-tance between nodes 
Pi and Pj as measured along the edges of the tree; that 
is, lij is the sum of the lengths of all the edges between 
nodes Pi and Pj. For each leaf node Pi, define a leaf 
vertex ui in the unit square ui,x∈[0,1], ui,y∈[0,1]. Then 
a crease pattern exists that transforms the unit square 
into a uniaxial base whose projection is T if 

(a)  |ui–uj| ≥ lij for every i,j; 

(b)  every leaf vertex belongs to a polygon whose 
boundary is composed of segments, each of 
which is either on the convex hull of the leaf 
vertices or is a line along which |ui–uj| = lij; 

(c)  the projection of a path around each polygon 
follows a simple path around some subset of 
the tree that does not cross any edge of the tree 
more than twice. 

Furthermore, in such a base, Pi is the projection of ui 
for all i.

Although the proof of the tree theorem is beyond the scope 
of this book, we will proceed to use it. The tree theorem tells 
us that if we can find a set of leaf vertices within a square for 
which the distance between any two is greater than or equal 
to the distance between their corresponding leaf nodes on the 
tree, then a crease pattern exists that can transform that pat-
tern of vertices into a base.

Thus, for example, the tree in Figure 11.1 has six leaf nodes; 
there are fifteen possible pairs of leaf nodes to worry about. The 
distance from node A to node E is 2 units; thus, the leaf vertices 
on the square that correspond to nodes A and E must be at least 
2 units apart. Similarly, to get from node A to node D on the 
tree, you must travel 3 units; and so the distance between leaf 
vertices A and D on the square must be at least 3 units as well. 
And so on, for the other thirteen possible pairs.

For a given tree, there are often several possible arrange-
ments of leaf vertices that satisfy the tree theorem, each of 
which yields a different base. For our six-pointed base, a little 
doodling with pen and paper will reveal that the pattern of 
nodes shown in Figure 11.7 satisfies all such conditions if the 
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square has side length 2√((121 + 8√179)/65) ≈ 3.7460, in which 
case the distances drawn in solid green lines are equal to their 
minimum values, and all other paths (indicated by dashed lines) 
are greater than the minimum length.

The tree theorem is an existence theorem; it says that a 
crease pattern exists, but it doesn’t tell us what this supposed 
crease pattern actually is. It does provide a strong clue, how-
ever. The tree theorem says that the leaf vertices become the 
tips of the flaps on the folded base. Are there any other features 
on the square that we can identify on the base?

Consider the inequality in the tree theorem. Two leaf verti-
ces must be separated on the square by a distance greater than or 
equal to the distance between their corresponding nodes on the 
tree. In the special case where equality holds, we can uniquely 
identify the line between the two vertices. We will call a line on the 
square that runs between any two leaf vertices a path. Every path 
has a minimum length, which is the sum of the lengths of edges of 
the tree between the two leaf nodes that define the path. (In the 
symbolism of the tree theorem, lij is the minimum length of path 
ij.) The actual length of a path is given by the distance between 
the vertices of the crease pattern that correspond to the leaf nodes 
as measured upon the square (|ui – uj| in the tree theorem). Any 
path for which its actual length in the crease pattern is equal 
to its minimum length as defined by the tree graph is called an  
active path.

In the base, the only route between two flap tips that is 
equal to the distance between the leaf nodes lies in the plane of 
the projection. Thus, any active path between two leaf vertices 
on the square becomes an edge of the base that lies in the plane 
of projection. Consequently, we have another important result: 

Any active path between leaf vertices forms an edge of the 
base that lies in the plane of projection of the base.

D
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2
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Figure 11.7. 
Node pattern that satisfies the 
tree theorem for the six-legged 
tree. Dotted lines are lengths 
that exceed their minimum 
value; solid green lines have 
lengths equal to their minimum 
value.
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Active paths on the square lie in the plane of projection 
of the square, but the plane of projection is where the vertical 
layers of paper in the base are connected to each other. In other 
words, since the paper on both sides of the path lies above the 
path in the folded base, there must be a fold along the path. 
This must be true for every active path. Thus, active paths are 
not only edges of the base; they are major creases of the base. 
And not just any creases; since the plane of projection contains 
the axial edges of the flaps, these creases must be axial creases 
(which is why I used green for their color in Figure 11.7).

Active paths become axial creases.

So now we have the rudiments of the crease pattern for 
the base. We know that the points on the square that corre-
spond to leaf nodes of the tree become the tips of the flaps of 
the base, and we know that active paths on the square become 
axial creases of the base.

We can construct further correspondence between ele-
ments of the tree and the crease pattern, namely, the branch 
nodes. The axial creases in the crease pattern map onto paths 
on the tree graph, so any point on the tree corresponds to one or 
more points along axial creases. Specifically, we can locate the 
points along each axial crease that correspond to each branch 
node, points we will call branch vertices.

If our hypothetical bookworm travels from one leaf vertex 
to another, encountering branch vertices at distances d1, d2, 
d3, and so forth along the way, then when we draw the crease 
pattern, we can identify each of the branch vertices at the 
same distances along the active path connecting the two leaf 
vertices as they were spaced out along the tree path. Thus, 
we can add all of the branch vertices to our budding crease 
pattern. In Figure 11.8, I’ve identified all of the vertices, both 

Figure 11.8. 
Left: tree with all nodes let-
tered. 
Right: crease pattern with leaf 
vertices, branch vertices, and 
active paths.
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leaf and branch, by a letter on the tree graph, and have added 
their corresponding vertices to the active paths in the crease 
pattern on the square. Observe that in general, a branch node 
may show up on more than one active path.

It’s also worth pointing out that we don’t show any leaf verti-
ces along the edges of the square because the paths between node 
pairs G and E, E and F, and F and H are not active paths.

11.3. Scale
There is one more factor to consider: the relationship between the 
size of the tree graph and the crease pattern on the square. In 
the pattern shown in Figure 11.8, we have given each stick unit 
length; but for this to fit within a square, the square must be larger 
than a unit square. In order to fit the crease pattern into a unit 
square, we introduce a quantity we call the scale, which is simply 
the distance on the square that corresponds to one unit in the tree 
graph. This is an unknown, as illustrated in Figure 11.9.

Figure 11.9. 
What is the relationship between the size of the square and the scale 
of the tree graph?

?

We can fit the crease pattern in Figure 11.8 into a unit 
square if we choose a scale factor m = 0.267; that is, one unit 
of length on the tree is equivalent to a distance of 0.267 in 
the crease pattern. Then we must modify the tree theorem to 
incorporate a scale factor. Our path condition becomes: For 
every path between leaf vertices ui and uj, the leaf vertices 
must satisfy the inequality
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(11–1)

for a scale factor m. We call the set of all such equations the 
path conditions for the given tree graph.

In this way, the scale factor becomes a quantitative mea-
sure of the efficiency of the crease pattern, and the search for 
the most efficient crease pattern can be expressed formally as 
an optimization problem: Given a tree that defines a base, op-
timize the scale factor while varying the coordinates of the leaf 
vertices, subject to the constraints that (a) the path conditions 
are satisfied, and (b) all leaf vertices lie within a unit square.

11.4. Subtrees and Subbases
It can be shown that active paths cross each other only at leaf 
vertices. Since active paths become axial creases, the pattern 
of axial creases breaks up the square into axial polygons. In 
some of the polygons, all of their sides are active paths (like 
the inverted-kite-shaped quadrilateral in the center of Fig-
ure 11.8). If one of the sides of a polygon lies on the edge of a 
square, it may or may not be an active path (in Figure 11.8, 
each triangle has one side on the edge of the square that is not 
an active path). Each axial polygon has the property that all 
of its sides map to the plane of projection of the base when the 
square is folded into a base. Consequently, to find a crease pat-
tern that collapses the square into the base, it is necessary to 
find a crease pattern that maps the network of axial polygons 
onto the plane of projection of the base.

That problem should sound familiar; this sounds like a job 
for molecules. Recall that the tree is the projection of the base, 
which is folded from the complete square. Each polygon on the 
square corresponds to a portion of the overall base, and if you 
collapse any polygon into a section of the base—which I call a 
subbase—the projection of the subbase is itself a portion of the 
projection of the complete base, i.e., a portion of the original 
tree graph. The tree graph of a subbase is called a subtree. For 
example, Figure 11.10 shows the polygons for our six-legged 
base and the corresponding subtrees for each subbase. Note 
that since all of the corners of an axial polygon must be leaf 
vertices, the triangles at the bottom corners of the square are 
not axial polygons and, in fact, do not contribute to the base in 
a significant way.

One requirement of axial polygons that we saw in previous 
sections was that if two axial polygons share a common side and 
that side is an axial path, any crease pattern that collapses the 

|ui − uj| ≥ mlij
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first polygon into a subbase must be compatible with a crease 
pattern that collapses the adjacent polygon into its subbase. In 
tiles, we enforced this matching by drawing circles and rivers 
within axial polygons and forcing the circles and rivers to line 
up. Then, when we introduced molecules, we found that circle/
river alignments could be enforced by requiring alignment of 
the tangent points of the circles.

Let’s look at the circle/river treatment of this problem. 
When the path conditions are written as equations, it is diffi-
cult to form an intuitive picture of them, but the value of such 
a treatment is that this optimization can be formulated as a 
set of equations capable of being solved by existing computer 
algorithms. We could have also solved for a base correspond-
ing to this tree by the circle/river method; if we did this, we 
would have arrived at a configuration of circles and rivers 
that we can superimpose on the rudimentary crease pattern 
from Figure 11.8, as shown in Figure 11.11.

Figure 11.11 makes it clear: The tangent points, which we 
introduced in an ad hoc way in the previous chapter, are sim-

Figure 11.10. 
The four axial polygons for the 
six-legged base and the sub-
trees corresponding to each 
subbase.
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ply the branch vertices, points along the axial paths that cor-
respond to the branch nodes of the tree. The creases that fill in 
this structure will be those creases that collapse the individual 
polygons so that the branch vertices around the perimeter of each 
polygon are aligned. And so, the molecular crease patterns we 
have seen—rabbit-ear (for triangles), Waterbomb, arrowhead, 
gusset, and sawhorse (for quadrilaterals)—will be the patterns 
that fill in these axial polygons as well.

You can also see from Figure 11.12 that the use of nonover-
lapping circles and rivers is simply a geometric way of enforc-
ing the path conditions that apply to pairs of leaf vertices. For 
example, take the case of two leaf nodes with a single branch 
node between them as shown in Figure 11.12. If the two leaf 
nodes are separated by edges with lengths a and b, then the 
path condition between their corresponding leaf vertices in the 
crease pattern would be

(11–2)
 

Figure 11.11. 
The pattern of leaf vertices and 
axial paths with circles and 
rivers from the corresponding 
base.
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Figure 11.12. 
Left: a tree with two leaf nodes. 
Right: use of nonoverlapping circles to represent the path conditions.
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If we draw a circle around node A of radius ma (the scaled 
length of flap A) and one around node B of radius mb, then the 
path condition is satisfied if and only if the two circles do not 
overlap; and at equality, the two circles touch.

Similarly, if the two leaf nodes are separated in the tree 
by multiple edges as in Figure 11.13, we can still represent this 
geometrically by inserting rivers whose width is proportional 
(by the same scale factor m) to the corresponding segments of 
the tree.

The use of circles and rivers to design a crease pattern and 
the solution of the path equations are completely equivalent 
approaches. Why use one instead of the other? Circles and rivers 
are concrete geometric objects, easily visualizable, and so are 
generally easier for a person to work with. But equations have 
their own value; they can be manipulated, rigorously proven, 
and turned into algorithms. The first computer algorithm for 
sophisticated origami design and the proof of its sufficiency were 
based on the path equations. However, most origami designers 
who use these techniques work with circles, rivers, and (as we 
will see) other geometric objects to create their own designs. 
Even if one is working computationally, it is still a useful aid 
to one’s intuition when working with crease patterns found by 
path methods to draw in the corresponding circles (and/or riv-
ers) to illustrate the underlying structure.

11.5. Computational Molecules
In the previous chapter on molecules, we distinguished dif-
ferent molecules by their number of flaps and whether or not 
they had connectors between groups of flaps. This distinction 
is concisely captured by associating with each molecule the 

Figure 11.13. 
Left: a tree with two leaf nodes and two branch nodes. 
Right: use of circles and rivers to represent the path conditions.
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particular tree graph (a subtree of the base’s tree graph) to 
which it corresponds.

As we have seen, there is a single triangle molecule, the rab-
bit-ear molecule. It has three flaps that come to a common point; 
thus its tree has three leaf nodes and three edges, which are 
joined at a common branch node, as shown in Figure 11.14.

If you are folding the axial polygon, you can find the inter-
section of the angle bisectors—point E in the figure —by pinch-
ing each corner in half along the bisector and finding the point 
where all three creases come together. If you are calculating 
the crease locations numerically, there is an elegant formula 
for the location of the intersection of the angle bisectors of an 
arbitrary triangle. If pA, pB, and pC are the vector coordinates 
of corners A, B, and C and pE is the coordinate of the bisector 
intersection, then pE is given by the formula

(11–3)

where s is the perimeter of the triangle. That is, the location of 
the bisector intersection is simply the weighted average of the 
coordinates of the three corners, with each corner weighted by 
the length of the opposite side.

What happens when one of the sides of the triangle is not 
an active path? This can happen, for example, when one of the 
sides of the triangle lies along an edge of the square; all of the 
triangles in Figure 11.8 are of this type. Since the distance 
between any two leaf vertices must be greater than or equal 
to the minimum path length, the side that isn’t an active path 
must be slightly too long to be an active path rather than too 
short. Fortunately, only a slight modification of the rabbit ear 

Figure 11.14. 
Generic form crease pattern, folded form, and tree graph for a rabbit-
ear molecule.
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is necessary to address this situation. Figure 11.15 shows the 
crease pattern and subbase when side BC is slightly too long.

The vertical crease emanating from point E is a new type 
of crease. Like hinge creases, it will be perpendicular to the axis 
and is perpendicular to the axial creases. However, it is not a 
boundary of a flap. For this reason we call this type of crease a 
pseudohinge crease and give it its own color (dark teal).

If the triangle has two sides that aren’t active paths, a 
similar modification will still collapse it appropriately.

Another case that we should consider is a triangle tree 
that has one or more branch vertices along its sides resulting 
from a branch node in the subtree. For example, the two side 
subtrees in Figure 11.8 each have three leaf nodes, but in each 
tree, one of the edges has a branch node because the subtree 
has a kink at that point. This situation corresponds to the 
presence of both circles and rivers within the triangle. We can 
still use the rabbit-ear molecule to provide most of the creases, 
but wherever we have a branch vertex along an axial path, we 
need a hinge crease propagating inward from the branch node 
to the ridge crease and back down to the adjacent side.

11.6. Quadrilaterals
As we saw in the last chapter, there were two classes of quad-
rilateral molecules: those with no rivers or rivers connecting 
adjacent edges, and those with rivers running across the quad-
rilateral. These two classes correspond to the two topologically 
distinct tree graphs with four leaf nodes, which are shown in 
Figure 11.16.

We will call the two tree graphs the four-star and the 
sawhorse. Below them you see the three simple molecules that 
can be used to fold them: the Waterbomb, sawhorse, and gusset 
molecules. The four-star graph can be thought of as a degener-
ate form of the sawhorse graph, the limiting case as the central 
segment (e) goes to zero length. Both the Waterbomb molecule 
and the sawhorse molecule can be considered special cases of 
the gusset molecule. Since the gusset molecule serves for any 
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Figure 11.15. 
Left: crease pattern for a triangle 
when side BC is not an active 
path. 
Right: resulting subbase.
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Figure 11.16. 
The two topologically distinct four-leaf-node trees and the simple 
molecules that can be used to fold them.

four-star sawhorse

a b

cd

a b

cd

e

Waterbomb molecule sawhorse molecule gusset molecule

quadrilateral, whether the underlying tree is a four-star or 
sawhorse, let’s go through its numerical construction.

In the previous chapter, I showed how to construct the 
gusset molecule by folding; here, I will show its construction 
by computation. Given a quadrilateral ABCD as shown in 
Figure 11.17, construct a smaller quadrilateral inside whose 
sides are parallel to the sides of the original quadrilateral 
but are shifted inward a distance h (the value of h is not yet 
determined). 

Denote the corners of the new quadrilateral by A′, B′, 
C′, and D′. Drop perpendiculars from these four corners to 
the sides of the original quadrilateral. Label their points of 
intersection AAB where the line from A′ hits side AB, BAB where 
the line from B′ hits AB, and so forth.

Now we need some distances from the tree graph. Let lAC 
be the distance from node A to node C on the tree and lBD be 
the distance from node B to node D. In most cases (see below 
for the exceptions), there is a unique solution for the distance 
h for which one of these two equations holds: 

AAAB + A′C′ + CCBC = lAC , or                  (11–4)
 

BBBC + B′D′ + DDAD = lBD .                    (11–5)BBBC + B′D′ + DDAD = lBD . 
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Figure 11.18. 
On the inner quadrilateral, con-
struct the bisectors of each tri-
angle to find points B′′ and D′′.
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Let us suppose we found a solution for equation (11–4). The 
diagonal A′C′ divides the inner quadrilateral into two triangles 
as shown in Figure 11.18. Find the intersections of the bisectors 
of each triangle and call them B′′ and D′′. (If the second equation 
gave the solution, you’d use the opposite diagonal of the inner 
quadrilateral and find bisector intersections A′′ and C′′.)

The points A′, B′′, C′, and D′′ are used to construct the 
complete crease pattern by dropping perpendiculars to the four 
sides, as shown in Figure 11.19. The perpendiculars at A′ and 
B′ are construction lines only, of no particular significance. The 
newly constructed lines from B′′ and D′′, however, are hinge 
creases (or, if the adjacent side is not an active path, they could 
be pseudohinge creases).

You can construct an equation for the distance h in terms 
of the coordinates of the four corners and the distances; it’s a 
rather involved quadratic equation. However, it can be solved 
directly, algebraically.

Figure 11.17. 
Construction of the gusset quad 
for a quadrilateral ABCD. Inset 
the quadrilateral a distance h; 
then drop perpendiculars from 
the new corners to the original 
sides.
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If you solve for the gusset quad numerically, you will see 
that there are some quadrilaterals for which the points A′, B′, 
C′, and D′ all fall on a line or point. In these special cases, you 
don’t get an inner quadrilateral for the gusset; instead, you get 
a sawhorse molecule (if a line) or a Waterbomb molecule (if a 
point). So the gusset molecule is, in fact, the general molecule 
for any quadrilateral.

Using the rabbit-ear molecule for triangles and the  
gusset molecule for quadrilaterals, you can fill in any tree- 
theorem-derived collection of axial polygons that consists of  
triangles and quadrilaterals to get the complete crease pat-
tern for the base. Figure 11.20 shows the full crease pattern 
for the six-legged tree and the resulting base. You can easily 
verify the crease pattern by cutting it out and folding it on the 
lines. As you can see, the projection of the base into the plane 

Figure 11.19. 
Drop perpendiculars from the 
new vertices B′′ and D′′.
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Figure 11.20. 
Full crease pattern (in structural form) and the six-legged base.
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is indeed the tree, and all of the flaps have the proper length. 
This crease pattern displays all of the structural crease types 
we have encountered: axial, ridge, gusset, hinge—and even a 
pair of pseudohinges along edges EG and FH.

11.7. Higher-Order Polygons
What about axial polygons with more than four sides? As 
we saw in the last chapter, we can reduce higher-order axial 
polygons formed in circle/river packings by adding a circle 
inside the polygon and inflating it until it contacts three other 
circles (or rivers). There is a corresponding procedure within 
tree theory.

Let’s take the same example we used before: a pentagon, 
which would represent a five-flap base. This would have a tree 
containing five leaf nodes. Although there are several possible 
five-leaf-node trees, let’s take the simplest for illustration, the 
one with a single branch node, i.e., a five-star. This graph and 
a sample axial polygon, are shown in Figure 11.21.

Figure 11.21. 
Left: tree for a base with five 
equal flaps. 
Right: pattern of leaf vertices 
and active paths corresponding 
to this tree.
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With circle/river patterns, we broke up higher-order 
polygons by adding circles within the polygon and inflating 
them until they contacted three (or more) of the other circles.  
Adding a circle to a circle/river pattern was tantamount to 
creating a new flap. The equivalent action in tree theory would 
be to add a new leaf node and edge to the tree and extend its 
length until the path inequalities become equalities for at least 
three of the other nodes (while the path inequalities for the re-
maining nodes remain satisfied). The result would be the same 
pattern whether we used circles and rivers or path equations, 
and is illustrated in Figure 11.22, filled with rabbit-ear and 
gusset molecules.

In this polygon, because of the bilateral symmetry, we 
were able to make the new circle contact four other circles (or 
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equivalently, turn four path inequalities into equalities). But in 
the general case, this is usually not possible. This can be seen 
by counting degrees of freedom; when we add a new circle, we 
have three degrees of freedom: the two coordinates of its center 
plus the radius of the circle. So we can, in general, use those 
three degrees of freedom to satisfy only three equalities.

Because of this limitation, we cannot usually subdivide 
quadrilaterals into triangles. For example, looking at quadri-
lateral ABGE in Figure 11.23, if we add another circle to the 
opening within the quadrilateral (which corresponds to adding 
another edge to the tree graph at node F), we will find that we 
divide the quadrilateral into two triangles—and another quad. 
Adding a circle to this new quad still leaves a quad behind. This 
process can continue forever, always leaving a residual quad-
rilateral, which is why we needed the gusset quad and other 
quadrilateral molecules.

Figure 11.22. 
Adding another flap to the base is equivalent to adding a new edge 
(and leaf node) to the tree. 
Left: the modified tree. 
Middle: the new circle pattern. 
Right: the crease pattern with molecules in place.
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Figure 11.23. 
Left: adding a circle to the quad-
rilateral subdivides it, leaving a 
new quadrilateral. Right: sub-
dividing the new quadrilateral 
still leaves a smaller quad.
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There is a way, however, of adding a fourth degree of free-
dom. We can add a new branch node along one of the existing 
edges of the tree and add a new edge and new leaf node to the 
new branch node. There are now four degrees of freedom: the 
two coordinates of the new leaf vertex, the length of the new 
edge, and the distance along the existing edge where the new 
branch node is placed.

With four degrees of freedom, it is, in principle, possible to 
satisfy four path equalities simultaneously. In the tree graph 
we have been working on, it turns out that we can add our new 
branch node to either of two edges, those connected to leaf nodes 
A and G. Both give solutions that satisfy the path conditions, 
as shown in Figures 11.24 and 11.25.

Figure 11.24. 
Left: a stub added to node A’s edge that satisfies four path equalities. 
Middle: active (axial) paths. 
Right: full structural form crease pattern.

Figure 11.25. 
Left: a second solution, adding the stub to node G’s edge. 
Middle: active (axial) paths. 
Right: full structural form crease pattern.
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Figure 11.26. 
Left: a stub-divided quadrilateral. 
Middle: one version of the arrowhead molecule. 
Right: another arrowhead molecule.

Figure 11.27. 
The crease pattern from a stubbed 
quadrilateral can be used to fold 
the quadrilateral into an analog 
of the Bird Base.

Both solutions divide the quadrilateral into four triangles, 
and in general, any quadrilateral can be similarly divided. I 
call this process adding a stub to the tree. By repeatedly adding 
stubs to a uniaxial base crease pattern, any such crease pat-
tern can eventually be divided into axial polygons that are all 
triangles, whereupon they all can be filled in with rabbit-ear 
molecules. A crease pattern that has received this treat-
ment, i.e., consists entirely of rabbit-ear molecules, has been  
triangulated.

There is an interesting relationship between a quad-
rilateral that has been quartered using a stub and the ar-
rowhead molecule. Look at the quadrilateral crease pattern 
in Figure 11.26. By removing a few creases, it’s possible to 
transform this pattern into either version of the arrowhead 
molecule for this quadrilateral.

Another interesting observation about stub-divided 
quads: The crease pattern within a stub-divided quad is  
topologically equivalent to a Bird Base, and by changing the 
directions of some of the creases, it is possible to use the crease 
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pattern of a stubbed quad to fold any such quad into an analog 
of the Bird Base, as shown in Figure 11.27.

The properties of quadrilaterals with distorted Bird Base 
crease patterns have been the subject of considerable investi-
gation on their own; Justin, Husimi, and Kawasaki have all 
enumerated various special cases.

11.8. The Universal Molecule
Since every polygon network can be broken up into triangles 
and quads by the addition of extra circles, the triangle and 
quad molecules are by themselves sufficient for filling in the 
crease pattern for any tree. And if we subdivide quadrilaterals 
with stubs, we can get everything down to triangles, so that the 
rabbit-ear molecule is the only one needed. However, there are 
many other possible molecules, including molecules that can 
be used for higher-order polygons. It turns out that the gusset 
quad is just a special case of a more general construction that 
is applicable to any higher-order polygon. I call this construc-
tion the universal molecule. In fact, all of the known simple 
molecules are special cases of the universal molecule. The rest 
of this section describes the construction of this molecule for 
an arbitrary polygon.

Consider a general polygon that satisfies the tree theorem, 
i.e., any two vertices of the polygon are separated by a distance 
greater than or equal to the separation between their corre-
sponding nodes on the tree. Since we are considering a single 
axial polygon, we know that of the paths between nonadjacent 
vertices, none are at their minimum length (otherwise it would 
be an active path and the polygon would have been split).

Suppose we inset the boundary of the polygon by a dis-
tance h, as shown in Figure 11.28. If the original vertices of the 
polygon were A1, A2,…, then we will label the inset vertices A1′, 

Figure 11.28. 
A reduced polygon is inset by a 
distance h inside an axial poly-
gon. The inset corners lie on the 
angle bisectors emanating from 
each corner.
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A2′,… as we did for the gusset quad construction. I will call the 
inset polygon a reduced polygon of the original polygon.

Note that the points Ai′ lie on the bisectors emanating from 
the points Ai for any h. Consider first a reduced polygon that is 
inset by an infinitesimally small amount. In the folded base, the 
sides of the reduced polygon all lie in a common plane, just as 
the sides of the original axial polygon all lie in a common plane. 
However, the plane of the sides of the reduced polygon is offset 
vertically from the plane of the sides of the axial polygon by a 
distance h. This is illustrated schematically in Figure 11.29.

As we increase h, we shrink the size of the reduced poly-
gon. Is there a limit to the shrinkage? Yes, there is, and this 
limit is the key to the universal molecule. Recall that for any 
polygon that satisfies the tree theorem, the path between any 
two vertices satisfies a path length constraint

                           (11–6)

where lij is the path length between nodes i and j measured 
along the tree. There is an analogous condition for reduced 
polygons; any two vertices of a reduced polygon must satisfy 
the condition 

                                                                     (11–7) 
              
where l′ij is a reduced path length given by

(11–8)
 

and αi is the angle between the bisector of corner i and the 
adjacent side. Equation (11–7) is called the reduced path in-
equality for a reduced polygon of inset distance h. Any path 

Figure 11.29. 
The reduced polygon in the 
folded form corresponds to the 
original polygon cut by a plane 
a distance h above the original 
plane of projection.

h

|Ai – Aj| ≥ mlij 

|A′i – A′j| ≥ ml′ij 

l′ij = lij – h(cot i + cot j )
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for which the reduced path inequality becomes an equality is, 
in analogy with active paths between nodes, called an active  
reduced path.

So for any distance h, we have a unique reduced polygon 
and a set of reduced path inequalities, each of which cor-
responds to one of the original path inequalities. We have 
already assumed that all of the original path inequalities are 
satisfied; thus, we know that all of the reduced path inequali-
ties are satisfied for the h = 0 case (no inset distance). It can 
also be shown that there is always some infinitesimally small 
but positive value of h for which the reduced path inequalities 
are also satisfied. On the other hand, as we increase the inset 
distance, there comes a point beyond which one or more of the 
reduced path constraints is violated.

Suppose we increase h to the largest possible value for 
which every reduced path inequality remains true. At the 
maximum value of h, one or both of the following conditions 
will hold: 

• For two adjacent corners, the reduced path length 
has fallen to zero and the two inset corners are de-
generate; or

• For two nonadjacent corners, a path between inset 
corners has become an active reduced path.

These two situations are illustrated in Figure 11.30.
Again, one or the other (or both) of these situations must 

apply; it is possible that paths corresponding to both adjacent 

Figure 11.30. 
Left: two corners are inset to the same point, which is the intersection 
of the angle bisectors. 
Right: two nonadjacent corners inset to the point where the reduced 
path between the inset corners becomes active.
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and nonadjacent corners have become active simultaneously or 
that multiple reduced paths have become active for the same 
value of h (this happens surprisingly often). In either case, the 
reduced polygon can be simplified, thus reducing the complex-
ity of the problem.

In a reduced polygon, if two or more adjacent corners have 
coalesced into a single point, then the reduced polygon has 
fewer sides (and paths) than the original axial polygon. And if a 
path between nonadjacent corners has become active, then the 
reduced polygon can be split into separate polygons along the 
active reduced paths, each with fewer sides than the original 
polygon (just as in the polygon network, an active path across 
an axial polygon splits it into two smaller polygons).

The gusset molecule is an example of a reduced path  
becoming active. In the gusset molecule the reduced quadrilat-
eral is inset until one of its diagonals becomes an active path; 
the reduced quad is then split along the diagonal into two 
triangles. In fact, what we have been calling a gusset crease is 
really nothing more than a reduced active path crease, but we 
will continue to draw them as gusset creases.

In either situation, you are left with one or more polygons 
that have fewer sides than the original. The process of insetting 
and subdivision is then applied to each of the interior polygons 
anew, and the process repeated as necessary.

If a polygon (active or reduced) has three sides, then there 
are no nonadjacent reduced paths. The three bisectors intersect 
at a point, and the polygon’s reduced polygon evaporates to a 
point, leaving a rabbit-ear molecule behind composed of the 
bisectors.

Four-sided polygons can have the four corners inset to a 
single point or to a line, in which case no further insetting is 
required, or to one or two triangles, which are then inset to a 
point. Higher-order polygons are subdivided into lower-order 
ones by direct analogy.

Since each stage of the process absolutely reduces the 
number of sides of the reduced polygons created (although 
possibly at the expense of creating more of them), the process 
must necessarily terminate. Since each polygon (a) can fold flat, 
and (b) satisfies the tree theorem, then the entire collection 
of nested polygons must also satisfy the tree theorem. Conse-
quently, any axial polygon that satisfies the tree theorem—no 
matter how many sides—can be filled with a crease pattern 
using the procedure outlined above and collapsed into a base 
on the resulting creases.

Thus, for example, the five-flap pentagon that I used to 
illustrate adding circles and stubs could also be turned into a 

© 2012 by Taylor & Francis Group, LLC



428 Origami Design Secrets, Second Edition

molecule directly using the universal molecule construction, as 
shown in Figure 11.31. The pentagon ABCDE is inset, form-
ing pentagon A′B′C′D′E′; the inset distance is chosen so that 
reduced path E′B′ becomes active. This becomes a mountain 
fold, and splits the reduced polygon into two distinct polygons, 
triangle A′B′E′ and quadrilateral B′C′D′E′. Repeating the 
insetting process on each of these reveals that in each case, 
the new polygon can be inset to a common point, yielding the 
rabbit-ear molecule in the former and the Waterbomb molecule 
in the latter.

A remarkable feature of the universal molecule is that all 
of the simple molecular crease patterns that have been previ-
ously enumerated are just special cases of it, including the 
rabbit-ear molecule, the gusset quad, and both sawhorse and 
Waterbomb quads. So the universal molecule well deserves its 
name; it is the only molecule needed to turn any tree method 
uniaxial base into a folded base.

Unfortunately, for polygons of higher order than quad-
rilaterals, there is generally no easy way to construct the  
universal molecule by folding alone; in most cases, it must be 
computed.

Faced with an axial polygon with five or more sides, you 
can do one of three things: 

• Add a circle (equivalent to adding an edge to an 
existing node of the tree), which creates three or more 
new active paths.

• Add a stub to the tree (equivalent to adding an edge 
and a new node to an existing edge of the tree), which 
creates four or more new active paths.

• Construct a universal molecule.

A
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A B

C

D

E

F
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F
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Figure 11.31. 
Left: five-flap tree. 
Right: generic form crease pat-
tern for its universal molecule.
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Since polygon subdivision is commonly called for in several 
places, you can mix and match approaches; say, add a stub 
to fracture a polygon, then fill in the results with universal 
molecules. Or you could apply the universal molecule to some 
polygons and subdivide others. As the number of sides of the 
initial polygon grows, the possibilities explode. All crease pat-
terns will be foldable into bases with the same number and 
length of flaps as was specified by the tree; the differences lie 
in the width of the flaps, the presence of extra flaps, and the 
number of layers of paper that lie along the axis of the base. 
Figure 11.32 shows the folded form for three of the crease pat-
terns for the five-flap pentagon.

These images also illustrate some general features of the 
different approaches. A nice feature of the universal molecule is 
that it is very frugal with creases. A tree filled in with universal 
molecules tends to have relatively few creases and large, wide 
flaps (which can, of course, be subsequently narrowed arbitrarily 
as desired). In fact, I conjecture that for any axial polygon, the 
universal molecule is the crease pattern with the shortest total 
length of creases that collapses that polygon to a uniaxial base. 
A small number of creases translates into relatively few layers in 

Figure 11.32. 
Crease patterns and folded forms for three different molecular 
solutions to the five-flap pentagon. 
Left: stub plus gusset quad. 
Middle: two stubs. 
Right: universal molecule.
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the base, at least until you start sinking edges to narrow them. 
A base with narrow flaps will require many folds, no matter 
how you design it. But with the universal molecule, because 
you don’t have to arbitrarily add circles (and hence points) to a 
crease pattern to knock polygons down to quads and triangles, 
bases made with the universal molecule tend to have less bunch-
ing of paper and fewer layers near joints of the base, even with 
multiply-sunk flaps, resulting in cleaner and—sometimes—
easier-to-fold models.

11.9. Other Techniques
An alternative design approach that blends aspects of the circle/
river method and tree method has been described by Kawahata 
and Maekawa. It has been called the string-of-beads method 
of design. As in the tree method, you begin with a tree of the 
model to be folded. Each line of the tree is turned into a pair of 
lines and the tree is expanded to fill a square, with the nodes 
of the tree spaced around the edges of the square like beads on 
a string. Circles and circular arcs are then constructed in the 
square that surround each leaf vertex. The process is illustrated 
for a six-flap base shown in Figure 11.33.

Figure 11.33. 
The string-of-beads method. The tree is turned into a closed polygon, 
which is then inflated inside a square with straight lines between 
the leaf nodes. The result is a large polygon inside the square that is 
subsequently collapsed into a base.

In the string-of-beads method, the tree is converted into 
a large polygon in which each corner is one of the leaf nodes of 
the tree, and each side is as long as the path between adjacent 
leaf nodes. It is clear that this distribution of leaf nodes is just 
a special case of the tree method in which we have constrained 
all of the nodes to lie on the edge of the square; it avoids creating 
middle flaps, but at the possible expense of efficiency.
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The string-of-beads method produces a single large polygon 
that must be collapsed into the base. The techniques described 
by Maekawa involve placing tangent circles in the contours 
shown in the last step of Figure 11.33, which is analogous to 
our use of additional circles to break down axial polygons into 
smaller polygons in the tree method. Kawahata’s algorithm 
projects hyperbolas in from the edges to locate reference points 
for molecular patterns, and produces yet another type of mol-
ecule.

One can also apply the universal molecule directly to the 
string-of-beads polygon, achieving another efficient crease pat-
tern that collapses into a base.

Figure 11.34 shows the universal molecule. The initial 
hexagon is inset to the point that the two horizontal reduced 
paths become active, and the hexagon is split into two triangles 
and a rectangle. The triangles are filled with rabbit ear creases; 
the rectangle is further inset, forming a sawhorse molecule.

The tree method of design is based on equations and has 
been rigorously proven to work. Rigorous proof may ease one’s 
mind, but solving the equations can be quite difficult to do 
by hand. Such computationally intensive problems are best 
handled by computer and, indeed, the procedures described 
above can be cast in the mathematical and logical terms that 
lend themselves to computer modeling. I have written a com-
puter program, TreeMaker, which implements these algorithms. 
Using TreeMaker, I’ve created bases for a number of subjects 
whose solutions have eluded me over the years—deer with 
varying sizes and types of antlers, 32-legged centipedes, flying 
insects, and more. Using a computer program accelerates the 
development of a model by orders of magnitude; from the tree 

Figure 11.34. 
Universal molecule for the 
polygon shown in Figure 11.33.
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to the full crease pattern takes less than five minutes, although 
folding the crease pattern into a base may take many hours 
after that!

Computerized solution offers an additional benefit: preci-
sion. It is possible to specify a different value for the length 
of every flap individually. This is particularly desirable when 
there are many flaps of unequal length in which the lengths 
must fall in some type of regular progression. An example 
requiring this is a scorpion. There are many scorpions in the 
origami literature; without exception, they all have legs the 
same length. But in the actual creature, the legs get longer 
from front to back; they are also spaced out along the body. By 
plugging in a tree with the appropriate leg lengths, it is pos-
sible to compute a base with the graduated distribution of legs, 
permitting a more realistic representation of the subject.

Computational techniques are also helpful in creating 
bases for extremely complicated subjects, such as those with 
many flaps in varying sizes. A flying grasshopper, for example, 
has six legs—two are much longer than the other four—along 
with antennae (of intermediate length), head and thorax (short) 
and abdomen (long). The legs, wings, and antennae account 
for six pairs of flaps. There are many possible arrangements 
of circles representing those flaps. One of the more symmetric 
and pleasing arrangements is the crease pattern shown in 
Figure 11.36, along with its base and the folded model. Can 

Figure 11.35. 
Crease pattern, base, and folded model of the Scorpion.
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you identify where a pair of stubs was added in the middle of 
the pattern?

Computation also allows one to introduce symmetries into 
the crease pattern, either to make the folding sequence simpler 
or for aesthetic reasons. A host of symmetric requirements 
can be imposed as additional equations to solve: forcing flaps 
to be mirror-image, or requiring active paths to fall along the 
symmetry line. This last condition is required to fold a plan 
view model—one that can be oriented with half the layers to 
the left of the axis and half to the right—or equivalently, to 
fold a model with a closed back. You can also force creases 
to run at particular angles. In the Alamo Stallion shown in  
Figure 11.37, several such symmetries are imposed: 

• An active path runs from the head to the tail so 
that the back is seamless.

• The base is symmetric about a line of bilateral  
symmetry.

• By forcing particular fold angles, its folding  
sequence becomes relatively tractable and requires 
few arbitrary reference points.

This last symmetry is a bit subtler. Observe that the 
equilateral triangle in the lower left is aligned with the ridge 

Figure 11.36. 
Crease pattern, base, and folded model of the Flying Grasshopper.
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Figure 11.37. 
Crease pattern, base, and folded model of the Alamo Stallion.

creases of the adjacent triangles; among other things, this 
choice forces equality between the length of the tail and the 
length of the hind legs. You can see the effect of this choice on 
the ease of folding; the full folding sequence for this model is 
given at the end of the chapter.

Figure 11.38. 
Crease pattern, base, and folded model of a Roosevelt Elk.
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A significant drawback of computed crease patterns is that 
it can be quite difficult to construct a linear folding sequence. 
In fact, not only is it hard to break the base down into a series 
of steps; it can be difficult simply to locate all of the major 
creases! This is especially the case for highly branched patterns 
whose flaps are chosen to be somewhat arbitrary lengths (e.g., 
to match the dimensions of a particular subject).

An example of the latter situation is shown in Figure 11.38. 
This juvenile Roosevelt Elk has a fairly complex branching pat-
tern in its antlers, and its creases fall on no particular grid. As 
you will see in its folding instructions at the end of the chapter, 
your best bet to find reference points for the folds of the base 
is to simply measure and mark.

11.10. Comments
Tree theory is in some ways the culmination of all of the differ-
ent techniques for constructing uniaxial bases. Uniaxial bases 
are wonderful things, but they are by no means all of origami. 
While insects, arthropods, and other many-legged creatures 
can often be successfully addressed with a uniaxial base, there 
are many origami subjects for which the many narrow flaps of 
a uniaxial base are not particularly suitable. Furthermore, the 
great majority of origami figures designed over the years were 
not constructed from uniaxial bases, and many designers—most 
notably John Montroll—have developed other approaches to 
design that are clearly not uniaxial.

However, uniaxial bases are amazingly versatile, and be-
cause they can be constructed systematically, they can be used 
for quite a few origami problems. Furthermore, the underlying 
techniques are more broadly applicable, and concepts from tree 
theory, circle/river packings, point-splitting, and more, can be 
mixed and combined with other techniques to yield efficient, 
novel, and sometimes beautiful structures. The last few chap-
ters demonstrate two of the many possibilities that lie within 
these hybrid approaches.
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Folding Instructions

Alamo Stallion

Roosevelt Elk
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1. Begin with a square, white
side up. Fold and unfold along
the diagonal.

2. Make a pinch halfway along
the left side and bottom.

3. Make three more pinches
along the edges.

Alamo Stallion
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4. Make another pinch along
the left edge.

5. Fold the two indicated
points together, make a pinch
along the edge, and unfold.

6. Fold the corner up along the
diagonal so that the crease hits
the pinch you just made.

7. Fold the top right corner to
the two indicated points, make
pinches along the top and right
edges, and unfold.

8. Fold the bottom corner up
to lie on the diagonal so that
the crease hits the left corner.

9. Make a pinch through the point
where the corner touches the
diagonal.

10. Unfold the paper. 11. Fold the left corner to the
pinch and unfold.

12. Fold and unfold.
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13. Fold the corner to the crease
you just made.

14. Refold on the creases you
made in step 12.

15. Turn the paper over.

16. Fold and unfold. All six
creases hit the diagonal at the
mark you made in step 9.

17. Mountain-fold the paper
in half along the diagonal.

18. Squash-fold the flap
symmetrically. The valley fold
lies on an existing crease.

19. Turn the paper over and
rotate 1/4 turn so that the white
triangle is at the bottom.

1/4

20. Crimp the model symmetrically
so that two corners end up on the
vertical crease.

21. Crimp the model symmetrically
so that the next two corners end up
on the vertical crease.
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22. Reverse-fold the corner
on the existing crease.

23. Reverse-fold the
corners on both sides.

24. Fold one flap up. 25. Squash-fold the
edge.

26. Fold the raw edge
to the center line.

27. Bring a flap to the front. 28. Fold one flap down. 29. Fold the next flap
down.

30. Swing one flap
to the right.

31. Repeat steps 24–30
on the left.

24–30

32. Fold two points to
two lines.

33. Fold the tip back to the
right along a crease aligned
with the center line.
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34. Unfold to step 32. 35. Open-sink in and
out on the creases you
just made.

36. Fold the next
flap tightly over the
edges of the sink.

37. Fold the tip of the
flap back to the right
along a crease aligned
with the center line.

38. Unfold to step 36. 39. Open-sink in and
out on the existing
folds.

40. Open the top of the
edge and spread-sink
the corner.

41. Close up the
model.

42. Swing one
flap to the right.

43. Repeat steps
32–42 on the left.

32–42

44. Fold the remaining
flap to the right along a
crease that lines up with
the folded edges.

45. Fold the tip
back to the left.

46. Unfold to
step 44.
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47. Open-sink the
corner in and out on
the existing creases.

48. Spread-sink the
corner as you did in
steps  40–41.

49. Spread the layers of the
top point symmetrically and
bring two points up to stand
out away from the model.

50. Fold the two points
in half and swing them
out to the sides.

51. Crimp the two
remaining flaps out to the
sides.

52. Fold the sides in and
tuck under the legs.
There’s no exact
reference point for this.

53. Curve the body into a
half-cylinder and rotate 1/4
turn counterclockwise.

1/4

54. Crimp the tail,
narrowing it at its base.
Crimp the neck upward.

55. Reverse-fold the tail.
Reverse-fold the head.

56. Narrow the tail with
mountain folds. Narrow the
neck with mountain folds.
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57. Pull down one layer of
the tail. Repeat behind.

58. Pull down another
layer of the tail. Repeat
behind.

59. Repeat step 58 two
more times, spreading
the layers evenly.
Repeat behind.

58, 2x

60. Valley-fold two
corners of the tail.
Curve the tip.

61. Outside reverse-
fold the head.

62. Crimp the
head upward.

63. Pleat the mane.

64. Double-rabbit-ear
the hind legs to the left.

65. Reverse-fold the legs.
Rotate the horse 1/8 turn
counterclockwise.

1/8

66. Mountain-fold the edge of each
hind leg, front and rear. Reverse-fold
the tip. Repeat behind.
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67. Narrow the leg. Fold the
corners of the hoof
underneath.

68. Crimp and open out the
hooves. Shape the tail so
that the tail and hooves form
a stable tripod.

69. Double-rabbit-
ear the forelegs.

70. Reverse-fold the tips of the
forelegs. Steps 71–73 will focus on
the forelegs.

71. Mountain-fold
the corners of the
forelegs.

72. Simultaneously
narrow and crimp the
forelegs downward
at slightly different
angles.

73. Crimp and open
out the hooves.

74. Pleat the mane. Crimp the
body. Reverse-fold the nose and
mouth. Shape to taste.

75. Finished Alamo Stallion.
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Roosevelt Elk

1. Begin with the colored side up. Fold the paper
in half and unfold. Turn the paper over.

0.00
5.24
7.97
9.33

22.91

32.47

70.00

0.00 11.01 20.56 26.28 70.00
24.21

2. Measure and mark off four points along the edges
and three in the interior. You can either make small
pinch marks (as shown here) or make light pencil
marks on the paper.
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3. Repeat on the right. Turn the paper over.

5. Crease the angle bisectors of each of the triangles. 6. If you are wet-folding, now is a good time to dampen
the paper. Fold on the creases shown. The result will
not lie flat.

0.00

5.24
7.97

22.91

32.47

0.0011.0120.5626.28
24.21

4. Using the marks for reference, add the creases shown,
forming a grid of assorted triangles. Turn the paper
over again.

Folding Instructions: Roosevelt Elk
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7. Pleat on the creases shown. Don’t make any new
creases. The model will still not lie flat.

8. Pinch the sides on the existing creases and
swing the top right corner down. The model
will still not lie flat.

9. Squash the base of the edge over
to the left, again using only existing
creases. Repeat behind. The model
will still not lie flat.

10. Reverse-fold the corner in and
mountain-fold the edge on the
existing crease. The model will still
not lie flat.

11. Reverse-fold the corner on the
existing creases. The model will
still not lie flat.

12. Turn the top right flap
inside-out and incorporate the
pleats shown.

13. Fold the small downward-pointing flap
upward and straighten out all the layers.
The points will all align and the layers will
now, finally, lie flat. Crease firmly.

14. Fold a rabbit ear using the
existing creases. Repeat behind.
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15. Fold a group of edges over to
the right. Repeat behind.

16. Fold a rabbit ear using the existing
creases. The left side of the model will
not lie flat. Repeat behind.

17. Fold another rabbit ear using
the existing creases. The left side
of the model will still not lie flat.
Repeat behind.

18. Squash-fold, using the existing
creases. Repeat behind.

19. Reverse-fold on the existing
creases. Repeat behind.

20. Fold one flap to the left.
Repeat behind.

21. Fold and unfold.
Repeat behind.

22. Fold and unfold through a
single layer of paper. Repeat
behind.

23. Squash-fold the layer over to the right.
Note that the reference point for the nearly
hidden valley fold is the intersection of two
hidden creases. Repeat behind.

Folding Instructions: Roosevelt Elk
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24. Pull the edge out and
squash the right edge
over. The hidden valley
fold falls on an existing
crease; the near valley
fold connects two
crease/edge intersections.

25. Squash-fold. The
vertical valley fold lies on
an existing crease; the
remaining creases form
when you flatten the
squash. Repeat behind.

26. Petal-fold. Repeat
behind.

27. Lift up the flap.
Repeat behind.

28. Bring some paper to
the front. Repeat behind.

29. Fold and unfold
along a horizontal line.
Repeat behind.

30. Sink the point on
the crease you just
made. Repeat behind.

31. Swing one flap over
to the right.
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32. Fold and unfold. 33. Sink the pair of
edges together.

34. Fold the flap
back to the left.

35. Swing one flap over
to the left.

36. Fold and unfold. 37. Fold and unfold. 38. Fold and unfold. 39. Open-sink in and out
on the existing creases.

40. Sink the corner
slightly.

41. Fold the narrow
flap to the left.

42. Fold one flap
down.

43. Fold the flap
to the left.

Folding Instructions: Roosevelt Elk
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44. Crease in fourths, as
you did in steps 37–38.

45. Open-sink in and out
on the existing creases.

46. Sink the two
corners.

47. Fold the flap back
to the right.

48. Sink the two
edges along angle
bisectors.

49. Sink the corner so
that its edges align with
the edges behind.

50. Fold the pair of
points back up to the top
of the model.

51. Fold two edges over
to the left.

52. Fold the small
flap down.

53. Fold one flap to
the right.

54. Fold the point over;
the crease lines up with
the edges behind it.

55. Fold the point back to the
left. The crease lines up with the
vertical center line of the model.
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56. Fold the excess paper
back to the right.

57. Unfold to step 54. 58. Sink in and out. 59. Sink the corner.

60. Fold one flap to
the left.

61. Fold the corner back to
the right; the crease lines up
with the edges behind it.

62. Fold the corner back to
the left; the crease lines up
with the center line.

63. Unfold to step 61.

64. Sink the corner
in and out.

65. Open-sink the
corners.

66. Fold the
point up.

67. Fold the group of
points downward.

Folding Instructions: Roosevelt Elk
© 2012 by Taylor & Francis Group, LLC



454 Origami Design Secrets, Second Edition

68. Fold one flap to
the right.

69. Valley-fold the corner in.
The crease lines up with the
edges behind it.

70. Fold another flap
to the left.

71. Fold the corner
to the right.

72. Fold the tip back
to the left.

73. Unfold to step
71.

74. Sink in and out. 75. Sink the corner.

76. Fold the flap over
to the left.

77. Fold the flap back to the
right. The crease lines up with
the center line.

78. Fold the tip of
the corner back to
the left.

79. Unfold to step 76.
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80. Sink in and out. 81. Sink the
corner.

82. Fold a group
of layers back to
the right.

83. Fold the
group of points
back up to the
top.

85. Fold a group of
layers to the right in
front and behind.

86. Crimp the body
to form two legs.

87. Sink the long edge.

88. Mountain-fold the edge
underneath. Repeat behind.

89. Fold a rabbit ear from the
flap. Repeat behind.

84. Repeat behind.

35–83

Folding Instructions: Roosevelt Elk
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90. Fold one point to the right
in front as far as possible.
Repeat behind.

91. Valley-fold downward a
point in front and behind.

92. Release some trapped
paper. Repeat behind.

93. Reverse-fold the hidden
edge so that it lines up with
the left edge of the leg.

94. Crimp the tail
inside the body.

95. Mountain-fold the edge
inside the body. Repeat behind.

96. Double-rabbit-ear
the hind legs.

97. Reverse-fold the
hind legs downward.
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98. Reverse-fold the
tips of the legs.

99. Squash-fold the tail.

100. Fold the ears back
toward the left.

101. Crimp the head and antlers downward,
pivoting around the point where the ears
join the head.

102. Fold the antlers
back to the left.

103. Reverse-fold the
hidden point downward.
Repeat behind.

104. Reverse-fold the
outermost point downward.

105. Fold the antlers in half, reversing the
direction of the fold halfway along their
length. Repeat behind.

Folding Instructions: Roosevelt Elk
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106. Pinch the two eyebrow horns at their base
to narrow them. Reverse-fold one of the upper
horns down and to the right. Repeat behind.

107. Reverse-fold the front point. Crimp
the two left points apart. Repeat behind.

108. Crimp the antlers.
Shape naturally.

109. Open and shape the ears.
Reverse-fold and shape the muzzle.
Pleat the neck.

110. Finished Roosevelt Elk.
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12
ne of the characteristics of many artistic endeav-
ors—as well as science and engineering, which 
also possess a significant artistic component—is 
the presence of creative bursts. Origami is no ex-
ception. The progress of origami design through 

the 20th century was one of steady, incremental advance punc-
tuated by occasional episodes of remarkable creativity. This is 
a universal phenomenon: It is as if some threshold is reached, 
that a truly new approach to design is discovered, then the 
technique or techniques are so rapidly explored and exploited 
that a jaw-dropping new field appears as if from thin air. Usu-
ally after the fact, historians can tease out the antecedents of 
a particular revolution, but in the days and years leading up 
to the critical event, no one saw it coming. This phenomenon 
happens in many fields of endeavor: Quantum theory revo-
lutionized physics in the early 20th century; Impressionism 
changed the world of painting forever. In origami, the most 
outstanding example of a creative burst was the mid-1960s 
appearance of Dr. Emmanuel Mooser’s Train, which ushered in 
an era of multiple subjects from a single sheet and of origami 
representing man-made articles, along with the collection of 
techniques that has come to be known as box pleating.

12.1. Mooser’s Train
In the small, loosely knit world of Western origami, Mooser’s 
Train, shown in Figure 12.1, was something of a bombshell. 
While many folders had grown comfortable with the notion of 
using multiple sheets of paper to realize a single subject—head 
and forelegs from this square, hind legs and tail from that—here 
was the far opposite extreme: use of a single sheet of paper to 

Box Pleating
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Figure 12.1. 
Mooser’s Train, folded by the author.

realize many different objects, the engine and cars of a complete 
train! The result was so unbelievable that folders scrambled to 
see how it was done.

Such a novel result was accomplished by an equally novel 
approach. What set Mooser’s Train apart from the vast major-
ity of origami designs was the folding style and technique, as 
well as the complexity of the resulting model. The difference 
was immediately apparent to even a superficial examination 
of the crease pattern. In nearly all ancient and early modern 
origami, the major creases were predominantly radial. They 
emanated, star-like, from various points in the square: the 
center, the corners, the midpoints of the edges, as shown in 
Figure 12.2.

Figure 12.2. 
Crease patterns of the Bird and Frog Bases, illustrating the radial 
pattern of creases.
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But in Mooser’s design, things were different. First, he 
started from a long rectangle; that alone was not a novelty, 
as several traditional models begin with a rectangle. But in 
contrast to most origami, the creases in Mooser’s Train formed 
a grid of mostly evenly spaced parallel lines, occasionally bro-
ken by diagonals running at 45° to the edges of the paper. The 
overall appearance of the crease pattern was wholly unlike the 
patterns of conventional origami.

Fortunately for the curious, origami has by and large 
fomented a culture of sharing of both results and how-to, and 
it wasn’t long before a hardy folder, Raymond K. McLain, had 
constructed and circulated an instruction sheet for the design. 
In lieu of formal publication—origami books were few and far 
between in the 1960s and 1970s—it was passed from person 
to person, photocopied, and recopied (this at a time when copi-
ers were far from ubiquitous). Dauntingly, the instructions 
consisted of a single page containing the crease pattern, no 
step-by-step diagrams, and a smattering of tiny, handwritten 
verbal instructions wrapped around the edges of the pattern. 
I’ve redrawn McLain’s instructions in Figure 12.3 if you’d like 
to give it a try yourself; for the adventurous soul who’d like 
to experience folding from the original instructions, they are 
reproduced in Figure 12.4.

The challenging diagrams and their lack of widespread 
availability only added to the aura of mystery surrounding this 
model, and soon after its appearance it became one of the test 
pieces against which the origami-hopeful must apply his or her 
folding skills. And any folded Mooser’s Train instantly became 
a focal point for the origami gathering at which it appeared.

Mooser’s Train fulfilled a valuable role: Its folding provided 
evidence that the folder had attained the pinnacle of the art. 
That was itself a worthy role. But Mooser’s Train was not the 
culmination of a new style; on the contrary, it was the road map, 
leading the way to an entirely new approach to origami design 
and a new class of origami subject matter—the man-made ob-
ject. It would inspire a small group of origami designers through 
a decade of creative growth, of exploration, and of pushing the 
boundaries of what was possible within the one sheet/no cuts 
origami paradigm. Their innovations, in turn, by showing that 
truly anything was possible with folding alone, would lead to the 
near abandonment of multi-sheet, or composite, origami design. 
And their work would go on to inspire an entire generation of 
origami designers, including the author of this book.

The revolution that was initiated by Mooser’s model began 
in earnest when its techniques were adopted and expanded 
by another innovative folder. By the mid-1960s Neal Elias 

© 2012 by Taylor & Francis Group, LLC



462 Origami Design Secrets, Second Edition

Figure 12.3. 
Folding instructions for Mooser’s Train.

Mooser’s Train Crease Pattern & Order of Attack

Worked out by R. K. McLain,
March 20, 1967
Hindman, KY 41822

Begin with (2) x (1) square.
Divide (2) into 32 squares.
Divide (1) into 16 squares.
Remove 4 squares the long way.
You now have 32 x 12 squares.
Mtn. fold under 1 square the long way
on each side.
Now make the crease pattern as
indicated. Each box car requires 10
squares long and 12 squares wide. The
locomotive requires 12 x 12.
Now mould the model much as you
would clay.
Several things must give at once so
that a firm crease pattern without
extraneous creases is helpful. Be patient
& gentle.

When moulding is
completed, squash & partially
petal fold the wheels & turn
under the end points a little.
(Make catcher with A & A′.)

Dent inwards the platform between
cars, lock the end of the last car by
valley folding inwards the platform
part, lock the underside by folding
inward the extra material between &
behind the wheels.
Bend the locomotive’s snout upwards,
penetrate (with a cut) it inwards into
the boiler & bring it back outwards
(with another cut) (and a valley fold)
as a smoke stack. If you succeed, you
get the prize for diligence! I’ll take
one too! This surely is a clever model
& points the way to future 3D origami.
Perhaps the crease pattern could be
scratched onto paper (making valley
folds only on both sides of the paper)
with a knife denting but not cutting
through.A A′
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Figure 12.4. 
Raymond K. McLain’s original instructions for Mooser’s Train.
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was already one of America’s most inventive folders and had 
diagrammed hundreds of his own new designs. Elias displayed 
an amazing ingenuity with the traditional origami bases. The 
classic Bird Base—which some folders felt had already been 
played out—in Elias’s hands blossomed into new shapes. 
Most notably, Elias had a flair for multisubject creations, for 
example, a birdhouse with two birds peering out, from a single 
Bird Base. When he saw Mooser’s Train, he immediately saw 
its vast potential.

To understand what this model signifies, we have to recall 
the state of origami design in the 1950s and 1960s. Origami 
designers typically picked a subject, then chose one of several 
bases that had varying numbers of flaps to work with. By choos-
ing a base with the same number of flaps as the desired subject, 
and hopefully with the flaps arranged in roughly the same 
positions as the features of the subject, the budding designer 
could, with further shaping folds, massage the base into some 
semblance of the desired subject. The designers of the 1950s 
and 1960s in both Japan and the West had systematically 
identified a dozen or so known bases. They had combined pieces 
of two bases to make hybrid bases. A few—notably American 
folder (and friendly rival of Elias) Fred Rohm—had devised 
new bases of their own.

But a three-car train bears no resemblance to any known 
origami base, uniaxial or not. Such a train combines big, boxy 
shapes with the need for fourteen identical flaps to form the 
wheels, appropriately distributed along the bottoms of the three 
cars (six on the locomotive, four on each of the boxcars). This is 
pretty specific. No one was ever going to fold a train from a con-
ventional base. Even though throughout the 1950s and 1960s 
new bases were continuously being discovered by trial and er-
ror, the odds of a given base having the right number and size of 
flaps in just the right place to make a train were millions to one. 
Even fast-forwarding to the 1990s, the techniques of uniaxial 
bases—circles, rivers, molecules, and trees—could handle the 
flaps but were not going to produce the solid elements. What 
Mooser had found, and displayed brilliantly in his Train, was 
a set of techniques for apparently making three-dimensional 
boxes and flaps at will.

How was this possible? What is it about the crease pat-
tern of the Train that bestows this incredible versatility? The 
answer is not immediately obvious. The most distinctive aspect 
of the crease pattern of Mooser’s Train is the fact that most of 
the creases run up-and-down or left-to-right. A smaller number 
run at 45°. This is to be contrasted with other origami bases in 
which the creases appear, at first perusal, to run every which 
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way at many different angles and directions. Which pattern 
shows greater flexibility: the constrained, uptown/downtown/
crosstown pattern of the Train, or the many-different-direction 
pattern of conventional origami? Clearly, the rules by which the 
Train was constructed were more restrictive than the rules of 
conventional origami. How could it be that a more restrictive 
set of rules leads to a less restrictive, more flexible result?

Paradoxically, it is the very tightness of the constraints of 
box pleating that makes it possible to fold such complex designs. 
The reason it has always been difficult to develop new origami 
bases is that a base is a gestalt, an inseparable whole; all parts 
of the pattern interact with other parts, so that it is very dif-
ficult to make a substantial change in one part of the pattern 
without having to change all other parts. The resemblance of 
a crease pattern to a spider’s web is an apt analogy; pluck a 
single strand and it reverberates throughout the web. Perhaps 
a better analogy is a stack of apples: Move the wrong apple and 
the heap collapses. Move one circle in a circle-packing and the 
entire packing might need to rearrange. Change a single vertex 
in a crease pattern, and its effects propagate throughout the 
entire pattern.

And those effects may very well precipitate a descent 
into unfoldability. Let’s take a simple example: the Frog Base, 
shown in Figure 12.5. Suppose that for some reason we wished 
to move the vertex that corresponds to the central point. Move 
that vertex the tiniest amount away from the center, changing 
nothing else, and the crease pattern becomes unfoldable (or 
rather, un-flat-foldable; it can no longer be pressed flat without 
creating wrinkles). It is possible, however, to move other verti-
ces to return the base to flat foldability, as shown on the right 
in Figure 12.5; but to do so requires that we shift the location 
of all the other interior vertices, resulting in moving nearly 
every crease in the pattern.

One seemingly innocuous change in the pattern forces 
changes throughout the design. And this was the result of an 
attempt to shift the location of a single point. We have not even 
added any points. In the early days of origami, design was in-
cremental, a change at a time. But if such a tiny change forces 
a complete redesign of the crease pattern, what hope has the 
designer of incrementally creating a fourteen-wheeled, three-
vehicled conveyance such as a train? How would a designer of 
a real steel-and-wood train fare if the most minor change—say, 
moving a door handle—forced an unpredictable change in every 
dimension of every part of the structure?

But in Mooser’s Train, some changes don’t cause so much 
trouble. In the Train, the creases don’t run every which way. 
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In fact, they only extend in one of four different orientations: 
up/down, left/right, diagonally upward, diagonally downward. 
And the creases don’t fall just anywhere: There is an underly-
ing grid, so that up/down and left/right creases run solely along 
grid lines, while diagonal creases always connect diagonal grid 
points. So the crease pattern is quite tightly constrained.

The constraint of the grid brings order to the crease pattern: 
It winnows the unimaginably vast space of possible patterns 
down to a manageable set. And most importantly, it limits the 
ways that different parts of the pattern can interact with each 
other. The problem with an old-style base like the Frog Base is 
not just that the central point interacts with the surrounding 
points: It’s that it interacts with each surrounding point in a 
different way. So one type of change creates several types of 
changes in its surroundings, which then create more changes 
in theirs, and so forth. This means that the complexity induced 
by a change quickly cascades as the change propagates away 
from the original perturbation. But in a box-pleated pattern, by 
contrast, where different parts of the crease pattern correspond 
to different parts of the model, all interact in the same basic 
way. And so, a fairly small tool kit of basic techniques can be 
combined and built up into quite complex structures.

The basic elements of this tool kit are visible in Mooser’s 
Train, the archetype for all the box-pleated models that fol-

Figure 12.5. 
Left: the crease pattern for a Frog Base. Suppose we move the center 
vertex upward. 
Right: the new flat-foldable crease pattern. Note that every other 
interior vertex has also moved.
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lowed. Those two elements are a technique for building and 
linking boxes (used for the bodies of the engine and the two 
cars), and techniques for creating flaps (used in the wheels and, 
especially, the smokestack). Both boxes and flaps grow out of 
the same rectilinear grid of creases, which allows arbitrary 
combinations of boxes and flaps to be created and combined 
at will.

12.2 Box Folding
The techniques to create box-like structures have their anteced-
ents in well-known traditional models that include (perhaps not 
surprisingly) a simple box, known for decades, if not hundreds 
of years. The box displays the underlying mechanism that 
enables box pleating as a style and that makes up the overall 
structure of Mooser’s Train. Box pleating as a style was sitting 
there all along, waiting to be discovered, but the most common 
folding sequence for the traditional box (given in Figure 12.6) 
and the diagonal orientation of the model obscure the underly-
ing structure and its relationship to the train.

This is a fairly common occurrence in origami: the pub-
lished folding sequence is usually constructed for ease of fold-
ability, or in some cases, for elegance of presentation (with a 
surprise move at the end). In either situation, the choice of 
folding sequence may well conceal, rather than illuminate, the 
underlying structure of the model.

Superficially, what we have here is simply a box with two 
handles. But let’s look at it as a collection of forms. We have a 
linear series of forms: 

• a flat form (the handle),

• a transition from a flat form to a three-dimensional 
form,

• the three-dimensional form (the box itself),

• another transition from the three-dimensional form 
to a flat form,

• and finally another flat form (the opposite han-
dle).

How does this combination of two- and three-dimensional 
forms arise from the flat sheet? The best way to find out is to 
take the model back to the flat sheet, keeping track of which 
parts came from where. If we label the features of the box—base, 
side, front, rear, handle—and note where each region comes 
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1. Begin with a square. Fold
and unfold along the diagonals.

2. Fold the four corners to the
center of the paper.

3. Rotate the paper 1/8 turn
clockwise.

1/8

4. Fold the sides in to the
center line.

5. Mountain-fold the top half
of the model behind.

6. Fold one flap up to the top
edge in front; repeat behind.

7. Pull the corners out to the
sides as far as possible and
flatten the model.

8. Pull the raw corners out
completely in front and behind.

9. Fold the corners in to the
center on existing creases.
Repeat behind.

10. Fold the top corner down;
fold the resulting flap down
again. Repeat behind.

11. Grasp the two white flaps
and pull them in opposite
directions, opening out the
model.

12. Finished Box.

Figure 12.6. 
Folding sequence for the traditional box.
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from in the unfolded sheet, we can establish a correspondence 
between the folded and unfolded forms of the model, as shown 
in Figure 12.7.

Figure 12.7. 
Correspondence between the 
parts of the folded model and 
the crease pattern.

If we examine the crease pattern by itself, we see that not 
all of the paper is needed to make the model. In particular, 
the top and bottom corners (which are tucked down inside the 
bottom of the model) don’t contribute much (other than a bit 
of extra stiffness, owing to the multiple layers), and the side 
corners are tucked underneath the handle as well.

Note that in this three-dimensional model, some of the 
mountain and valley folds make a dihedral angle—the angle 
between adjacent surfaces—of 90° while others are pressed flat 
in the folded model.

Examination of the labeled crease pattern in Figure 12.8 
shows that we don’t need the entire square to fold this box. In 
fact, we can fold what is essentially the same model from a 3 × 2 
rectangle, as outlined by dotted lines in Figure 12.9.

Although a 3 × 2 rectangle is considered nonstandard in 
origami (or at least, less common) and is less pleasingly sym-
metric than a square, it is a more natural shape for folding the 
box, since the edges of the paper are aligned with the sides of 
the box and the layers are more evenly distributed. We can 
fold essentially the same box from a 3 × 2 rectangle, as shown 
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Figure 12.8. 
Crease pattern for the box with 
features labeled.

Figure 12.9. 
A 3 × 2 rectangle (dotted line) encloses all the important elements 
of the model.

BaseSideHandle

Front

Side Handle

Rear

BaseSideHandle

Front

Side Handle

Rear

BaseSideHandle

Front

Side Handle

Rear

in Figure 12.10. Note, however, that the folding sequence is 
considerably different.

This simple box is one of the building blocks of box-pleated 
models. It is a structure that can be stretched, squeezed, 
modified, and most importantly, combined with duplicates and 
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Figure 12.10. 
Folding sequence for the traditional box from a rectangle.

1. Begin with a 3 × 2 rectangle.
Fold and unfold in thirds.

2. Fold the top down and unfold.

3. Fold each edge to a crease line
and unfold.

4. Bring the bottom edge to the vertical crease line,
crease, and unfold. Repeat on the right, and in two
places up top.

5. Fold the sides up so that they
stand straight up.

6. Fold the raw edges of each side toward
each other, lifting up the front and rear
edges at the same time.

7. Fold the sides down. 8. Finished Box.
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variations of itself to yield remarkably complex objects. Let’s 
run through a few of the simplest possible variations.

The first variation stems from the fact that there are two 
ways to fold the same box. If you fold steps 1–6 the same, but 
at step 7, wrap the vertical edges around to the other side, 
you get a similar, but slightly different, structure as shown in 
Figure 12.11.

Figure 12.11. 
A different finish for the box from a 3 × 2 rectangle.

7. Wrap the raw edges to the
inside, turning valley folds into
mountain folds and vice versa.

9. Finished Box.8. Fold the side flaps down.

The two versions of the box differ slightly in the handles. 
In the first, the handles are white; in the second, they are col-
ored. But there is a more important difference: In the second 
form of the box, the raw edges of the paper are exposed on the 
top side of the box. We’ll make use of this a bit later.

Next, we can change its proportions. We can make it lon-
ger, wider, or taller, or any combination of the three. We can 
approach all three by way of a little thought experiment. Sup-
pose we wished to make it longer (i.e., shift the handles farther 
from each other). If the paper were made of rubber, we could 
simply stretch it, as shown in Figure 12.12.

But since paper can’t stretch, we need another approach. 
Suppose we wanted to make the box 50% longer, that is, half 
again as long as it is now. An approach that doesn’t require 
stretching is to cut the model in two and add more paper where 
we need it, as shown in Figure 12.13.

At this point, origami purists are howling in protest: Origami 
is the art of folding, not cutting and taping paper! How can this 
be called origami? For it to be pure origami, we would have to fold 
this box from an uncut sheet of paper. But this is nothing more 
than grafting, which we did in Chapters 6 and 7. If you construct 
a box according to the prescription in Figure 12.13 and then un-
fold it, you will wind up with a flat sheet of paper composed of 
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Figure 12.12. 
Stretching the box to make it longer.

Figure 12.13. 
Lengthening the box by cutting and inserting more paper.

1. To make the box longer, stretch
the paper apart.

2. Like this.

1. To make the box longer, cut it
in half …

2. Spread the halves apart … 3. And insert a section to lengthen
the box.

4. Join the cut edges … 5. And voila! A longer box.
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several segments, taped together at the edges to form a somewhat 
larger rectangle. Having already resigned ourselves to using a 
rectangle, we can simply convert the taped rectangle into a new, 
slightly longer rectangle that is once again a single uncut sheet, 
as shown in Figure 12.14.

Figure 12.14. 
The unfolded model, and an uncut sheet that can be used to fold the 
longer box.

1. The unfolded cut-and-taped model is a
flat sheet of paper.

2. So the model could be folded by starting
with an uncut sheet of the same size.

So the box can be made longer by adding more paper to the 
starting rectangle. We have changed its proportions, of course—
we started with a 3 × 2 (or equivalently, 6 × 4) rectangle; we 
now are using a 31/2 × 2 (or equivalently, 7 × 4) rectangle. But 
if you’re folding from a rectangle, one rectangle is nearly as 
good as another.

One might begin to suspect that this technique could be 
applied universally; everywhere you want to lengthen a point, 
you simply add a segment of paper to the folded model, then 
unfold it to get the new crease pattern. But this is not always 
possible; in fact, it is rarely possible with most traditional 
origami bases. As we saw with grafting, we were often forced 
to add paper that showed up in several different places. It’s 
difficult to add a local graft in a radial-crease base, such as the 
kind we constructed with circle/river packing. To see why, let’s 
take the traditional Bird Base and try to lengthen just one of 
its points by the same grafting strategy.

As Figure 12.15 shows, it doesn’t work. You can certainly 
lengthen the point by cutting and inserting a section of paper, 
but the resulting shape, when unfolded, cannot be flattened. 
Often in origami, we start with a flat sheet of paper and try to 
make a model that folds flat; here, we have the opposite prob-
lem: The model is flat, but the sheet from which it springs is 
not! So one cannot willy-nilly use grafting as a means to change 
the proportions of a small portion of the model.
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But with the 3 × 2 box—with box-pleated models, in 
general—you can often change the proportions of parts of the 
folded model by changing the proportions of the rectangle from 
which you started as if you had cut the original rectangle and 
inserted a strip. What makes it all possible is the angular 
relationship between the cuts and creases that cross the cut 
(and here I refer only to creases that are folded, not to crease 
marks left over from some prior fold-and-unfold step). If all 
creases that cross a cut do so at 90° to the cut, then one can, in 
general, add a strip of paper between the cut edges to alter the 
proportions of the model. We saw this when we added grafted 
strips to uniaxial bases; we cut along axial creases so that the 
only creases that crossed the cut were the hinge creases, which 
by definition cross at 90°.

Figure 12.15. 
A failed attempt to lengthen a single Bird Base point by an inserted 
graft.

1. Crease pattern for the Bird Base. 2. Cut the point that we
want to lengthen.

3. Insert a section of
paper to lengthen the
point.

4. Unfold.

5. The unfolded paper cannot be flattened.
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In a box-pleated model, nearly all the creases are either 
vertical or horizontal. So if a cut is made vertically or horizon-
tally, then the creases are either parallel to the cut, in which 
case they don’t hit the cut, or they are perpendicular to the 
cut, in which case they hit it at the proper angle. So, as long 
as you are careful to avoid cutting through the few diagonal 
creases, it’s possible to enlarge and extend box-pleated models 
by repeated application of the cut-and-tape technique.

Coming back to our 3 × 2 box, you should be able to see 
now how to make the box wider rather than longer by adding a 
strip running horizontally through the middle of the rectangle. 
This process, which changes the rectangle from 6 × 4 to 6 × 5, 
is shown in Figure 12.16.

What if we wanted to make the box smaller, not larger? 
Then instead of adding paper, we would take paper away. Let’s 
reduce both the length and the width of the box by a single 

3. The wider box.

1. To make the box wider, add a
strip of paper horizontally through
the crease pattern.

2. Like this.

Figure 12.16. 
Adding a strip to enlarge the box in the other direction.
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square in each direction. We do this by cutting out both a verti-
cal and horizontal strip.

Because we’ve cut paper out, the flaps that fold toward 
each other in the handles now overlap. It is desirable to avoid 
such overlaps; we can eliminate them by adding a few extra 
reverse folds as shown in Figure 12.17.

Figure 12.17. 
Folding a smaller box.

1. Cut out the shaded cross-
shaped region.

2. Now fold the box in the same way
as before. Note that the two side flaps
overlap one another.

6. Fold the flaps
out to the sides.

7. Finished box.3. Reverse-fold the
corner so that the
raw edge lines up
with the far vertical
edge.

4. Reverse-fold
the other corner
in the same way.

5. Repeat steps 3–4
on the near flaps.

3–4

The extra reverse folds add a few new folds to the crease 
pattern. They, too, are predominantly vertical and horizontal. 
If you cut out a section of this box (the shaded region in Fig-
ure 12.18), you will come back to the original 3 × 2 box exactly 
half the size of the original pattern (with somewhat longer 
handles).

Comparing steps 4 and 5 shows that the difference between 
a shallow box and a deeper box is precisely the shaded region 
in step 2. Thus, we can make a box wider or longer by adding 
simple strips of paper, and by adding a more complicated shape, 
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as shown in step 2 of Figure 12.18, we can make the box deeper 
as well. Thus, it is possible, using basically the same structure, 
to make any length, width, or depth, box.

But this is still only a single box. We quickly exceed the 
interest level of a single box. However, another nice property 
of box-pleated designs is that if you are careful to keep track 
of the raw edges of the paper, you can easily join structures in 
a way very similar to the way we expanded them.

Figure 12.19 shows how two boxes can be joined at their 
edges to make a double-box, which can, in turn, be folded from 
a single 4 × 12 rectangle.

It was possible to join the two boxes because the raw edge 
along one side of the paper lay along a single line in the folded 
form of the model. That raw edge could therefore be mated to 
a similarly aligned edge.

It isn’t necessary, however, that the raw edges lie on a 
single line for two shapes to be joined. The raw edge can actu-
ally take on any three-dimensional path whatsoever, as long 
as the mating part takes on the same path. This next structure 
(Figure 12.20) mates boxes and partial boxes to realize a fully 
enclosed box.

Figure 12.18. 
The crease pattern for the smaller box.

4. The crease pattern
from step 1 folds this.

5. The crease pattern
from step 3 folds this.

1. The crease pattern for the small
box.

2. Cut out the shaded region ... 3. And we’re back to the original
3 × 2 box pattern, but with longer
handles.
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Two or three of these boxes can be joined at their ends. 
They can be lengthened, made taller, and butt-joined, and as 
the collection of boxes grows, the rectangle from which the 
complete shape is folded grows correspondingly.

Another way of thinking of this box is as a tube that is 
squeezed at the ends, as shown in Figure 12.21.

So now, we have a general-purpose way of making boxes: 
long boxes, wide boxes, open boxes, closed boxes, and chains 
of boxes. Boxes of all shapes and sizes. But as a starting point 
for origami, boxes are somewhat limited: you can only use 
them to make things that are, well, box-like. Fortunately, 
what could be more box-like than—a boxcar? Or, in the case 
of Mooser’s Train, a train of boxcars! It’s not hard to see how 
one progresses from a chain of boxes to a train of boxcars. 
And while Mooser’s Train isn’t built from precisely this type 
of box, the main structural element, shown in Figure 12.22, 
is a small modification of it.

Figure 12.19. 
Joining two boxes, and the resulting crease pattern.

1. Joining two boxes. 2. Joined.

3. The crease pattern for the double-box.
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This shape doesn’t look very much like a boxcar yet. But 
by using the techniques shown in this section, one can lengthen 
the car, add extra paper along the bottom, turn the excess 
underneath—and suddenly, the model begins to look very 
boxcar-like. Connecting the boxcars—by turning the single-car-
square into a chain of squares, i.e., a long rectangle—yields an 
entire train. The use of primarily orthogonal creases allows rela-
tively straightforward grafting of different box-like structures 
together. But the final element, which bloomed in the hands 
of Elias, Hulme, and others, was that box-pleated structures 

Figure 12.20. 
A fully three-dimensional box.

4. A three-dimensional box and its crease pattern.

1. Split a box down
the middle.

2. Like this. Combine
the parts with another
box.

3. Now swing the side pieces up
and join the raw edges.
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1. Fold the crease pattern into a tube. 2. Squeeze the top and
bottom of the tube.

3. A three-dimensional
box.

Figure 12.21. 
The box can also be thought of as a pinched tube.

Figure 12.22. 
The building-block crease pattern and box for Mooser’s Train.

1. The basic crease pattern for Mooser’s
Train.

2. The basic box for Mooser’s Train.
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allowed the integration of boxes with flaps: flaps for wheels, 
for legs, for arms, for entire bodies. And so we shall now turn 
our attention to flaps.

12.3. Box-Pleated Flaps
Boxes are interesting, but the possibilities for things we can 
make from boxes alone are pretty limited. Mooser’s Train con-
tains more than just boxes; an essential part of its “train-ness” 
are its wheels—14 of them in total. Each wheel comes from a 
small, triangular flap of paper. Part of the beauty and power 
of box pleating is that it makes it relatively easy to create such 
flaps and to place them where we want. To see why this is so, 
let us create and examine several such flaps. 

We don’t have to fold the entire train to do so. We can, in 
fact, just fold flaps in isolation. As long as we respect the grid 
on which the creases of the boxes reside, we can create flaps and 
then, in principle at least, splice together our flaps and boxes 
along the grid lines of creases, just as we did with grafting. So, 
let’s fold an isolated train wheel flap.

When folding box-pleated structures, we know in advance 
that vertical and horizontal folds will fall on a regularly spaced 
grid. We don’t know where the diagonal folds fall, at least, not 
at the beginning; they’ll typically fall in different grid squares 
for different structures. When we’re experimenting, though, it’s 
often convenient to have the paper precreased into a square 
grid so that those vertical and horizontal folds fall naturally in 
the right place. But how many grid squares do we need? Pre-
creasing grids in powers of 2 (2, 4, 8, 16, 32…) is fairly easy, so 
a good general practice is to start with an 8 × 8 grid, as shown 
in Figure 12.23, and then jump up by powers of 2, as needed, 
if more squares are needed for the test structure. You’ll find 
it most efficient to fold all of the ½ divisions, followed by all of 
the ¼ divisions, then the ⅛ths, and so forth.

If we want to focus on the train wheel, we should extract 
just that part of the crease pattern, plus a little extra paper 
that will serve to illustrate how the layers of its flap need 
to connect to other parts of the model. Figure 12.24 shows 
a small slice of the crease pattern from Figure 12.3 that 
contains a single wheel (from the upper left corner of the 
crease pattern). We can then transfer this crease pattern to 
a precreased 8 × 8 grid. Note: McLain’s original crease pat-
tern, shown in Figures 12.3 and 12.4, didn’t show the creases 
that appear in the outermost column of grids and were drawn 
with the colored side of the paper up. In Figure 12.24, I have 
added those creases and drawn the paper white side up. 
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Figure 12.23. 
Precreasing an 8 × 8 grid.

1. Fold the bottom up to the top and
unfold.

2. Fold the bottom and top edges to
the crease you just made.

3. Add folds dividing into eighths by
bringing the top and bottom edges to
the folds shown.

4. Rotate the paper 1/4 turn.

1/4

5. Repeat steps 1–3.

1–3

6. The precreased grid.

Figure 12.24. 
Left: section of the Train crease pattern that contains a single wheel 
flap. 
Right: the crease pattern transferred onto an 8 × 8 grid with creases 
extended to the boundary.
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Figure 12.25. 
Folding sequence to create a single wheel flap.

1. Begin with the grid. Fold one
column over to the right.

2. Pleat on two horizontal grid lines. 3. Fold two panels over to the
right.

4. Fold the top edge back to the left
and reverse-fold the hidden corner.

5. Fold a rabbit ear from the lower
layer.

6. The completed flap.

A question that always arises with crease patterns is, “In 
what order do you make the creases?” As you have no doubt 
already discovered, with tree theory bases, there often is no 
simple order: many creases must be brought together at once. 
In the case of this wheel flap, though, there is a relatively 
simple folding sequence that takes a precreased grid to the 
flap, which is shown in Figure 12.25.

Now, it is tempting to think that the relevant question here 
is, “What is the folding sequence needed to make this triangular 
flap?” But the real question you should focus on is, “What are 
the folds needed to make the flap?” without worrying overmuch 
about what order you might make the folds when it actually 
comes to folding. And, perhaps even more important, how much 
paper was required to make this, and other, flaps?

The train wheel flap is one grid unit long, which suggests 
that it might be one of the simpler box-pleated flaps. But it is 
not the simplest; that first column of squares that we folded 
over in step 1 is paper that doesn’t really contribute anything 
to the flap except thickness. A simpler structure, which re-
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Figure 12.26. 
Left: crease pattern for a simple triangular flap. 
Right: the folded flap.

Figure 12.27. 
Left: the crease pattern can be divided up into three types of regions: 
the flap, the background, and excess paper. 
Right: the folded form, showing the lines of division.

sults in a triangular flap of the same dimensions, is shown 
in Figure 12.26.

Now, one way of thinking of the folded result is: “a big flat 
region in which we’ve grafted in a flap.” So, let’s identify the 
graft, using the ideas from Chapter 6. We can identify three 
distinct regions of the paper: the flap itself, the background 
in the folded form, and the excess paper that’s needed to keep 
the post-grafted crease pattern lying flat. These regions are 
identified in Figure 12.27.

flap

excess

excess

background
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This structure definitely has the hallmarks of a graft: 
there’s a bit of paper that is devoted to the new structure, the 
flap, and then a long, parallel-sided strip of excess paper that 
doesn’t really contribute anything except thickness (usually 
undesired, but an acceptable price to pay for the newly cre-
ated flap). In Chapter 6, we encountered edge grafts, which 
run along the boundary of the paper, and strip grafts, which 
cut through the middle of the paper. This triangle flap is, in 
effect, a combination of the two. The vertical strip of excess 
paper is an edge graft; the horizontal strip is a strip graft. The 
combination of the two types of graft creates the excess paper 
we need to realize this triangular flap. We’ll call this a “T-graft” 
(since the shape of the added paper is T-shaped, if you look at 
it sideways).

That realization, then, sets the stage to generalize and 
expand this concept. We know from graft theory that larger 
grafts allow the creation of larger flaps. That should be the 
case here. If we double the width of each of the strips in the 
T-graft, we should, in principle, be able to double the length 
of the flap that we’ve created. And that is, in fact, exactly the 
situation, as illustrated in the crease pattern and folded form 
for a 2-unit-long flap shown in Figure 12.28.

Figure 12.28. 
Crease pattern and folded form for a 2-unit-long flap.

We have lengthened this flap by one unit, at the expense 
of adding another unit to the width of the vertical strip and two 
to the height of the horizontal strip. As you might expect, we 
could continue the process: a 3-unit flap, resulting in the crease 
pattern and folded form in Figure 12.29. Here, the horizontal 
strip of the T-graft has nearly consumed the entire height of 
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our 8 × 8 grid, so to go to longer and longer flaps, we’d need to 
go to a larger number of squares in our grid.

Even from these three examples, though, you can begin 
to see the pattern: the region of the paper that goes into the 
flap is a 1:2 rectangle with alternating mountain/valley creases 
emanating from the midpoint of one side to the opposite cor-
ners. The three sides of this rectangle that connect to the rest 
of the paper do so with alternating pleats. These pleats are 
very regular structures. You can see, I think, that it would be 
relatively easy to connect these pleats to other flaps or boxes 
of the sort we created at the beginning of this chapter.

One other observation here is that with this pattern, in 
which the flap comes out on the white side of the paper, the 
color of the flap itself alternates with its length: odd-length flaps 
are colored, even-length flaps are white. But this is not strictly 
required; we can, in fact, change the even-length flaps to col-
ored (or odd-length flaps to white) simply by devoting another 
vertical strip to the T-graft, as shown in Figure 12.30.

Now look at the top edge of the paper, starting from the left 
side. For colored flaps, no matter what their length is, the first 
vertical crease is a valley fold. The next is a mountain. And from 
there, they alternate, mountain/valley, with the total number 
of creases depending on the length of the individual flaps.

Since the pleat creases are perpendicular to the edges of 
the paper, this means that we could easily create two flaps of 
the same size along the edge of the paper by simply connecting 
two T-grafts to each other so that the vertical creases of the 
pleats match up, as illustrated in Figure 12.31.

Figure 12.29. 
Crease pattern and folded form for a 3-unit-long flap.
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Figure 12.30. 
Crease pattern and folded form for a colored 2-unit-long flap.

Figure 12.31. 
Crease pattern and folded form of two 1-unit flaps grafted together.

This is how Mooser was able to create 14 wheels at speci-
fied locations along his train. We can easily string arbitrary 
numbers of flaps out along the length of a base using this 
technique.

But we are not restricted to connecting flaps that are all 
the same size. Longer flaps have more vertical pleats, true. 
But we can easily add pleats to shorter flaps, simply by folding 
the smaller flaps, creating their horizontal pleats, and then 
pleating through the entire bundle of layers as needed, until 
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Figure 12.32. 
Left: crease pattern for a vertical array of five flaps. 
Right: the folded form.
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the number of vertical pleats in the shorter flap structures 
equals the number of pleats needed by the longest flap in 
the entire assembly. In fact, given sufficient paper, we can 
create any string of any number of flaps of any length we 
wish. Figure 12.32 shows an example of five flaps, whose 
lengths run 1-2-3-2-1, each spaced two units from the next. 
I encourage you to try folding this, which will help develop 
a physical intuition for how to assemble these types of struc-
ture from their crease patterns. Sequential folding sequences 
can be elusive.

In this pattern, I put 2-unit gaps between the flaps for 
clarity, to make it easy to resolve the individual flap crease 
patterns. As further practice, you might try folding this 
same structure, but with 1-unit gaps, or no gaps—all flaps 
emanating from the same point.

12.4. Corner and Middle Flaps
Thus far, we’ve seen how to create edge flaps using box pleat-
ing, and we can put any number of flaps of any length, at any 
spacing, around the edges of the paper. That is provided, of 
course, that there is enough paper available. If we have allowed 
ourselves to use arbitrary rectangles (a la Mooser’s Train), then 
we can, effectively, scale up our rectangle to accommodate all 
of the flaps that we need.

But are we restricted to only creating flaps around the 
edges of the paper? No, as it turns out. As we have seen in 
previous chapters, there are corner, edge, and middle flaps. 
Thus far, we’ve only looked at box-pleated edge flaps: but 
surely there are box-pleated analogs of corner and middle 
flaps. And indeed there are.

A corner flap is easily created by simply splitting one 
of the edge flaps that we’ve already constructed along the 
obvious line of symmetry of the flap. Figure 12.33 shows the 
results for 1-unit, 2-unit, and 3-unit flaps. 

As with the edge flaps, the color changes depending on 
whether the length of the flap is odd or even. And, as with 
the edge flaps, one can add additional strips to the top and/or 
side to change the color of the flap, to add layers, or simply 
to make the parity of the alternating mountain/valley folds 
match the parity of the folds to which the flap is grafted.

What about middle flaps, though? Can we create box-
pleated middle flaps? We can indeed. A corner flap is half of 
an edge flap; an edge flap, then, could be considered half of 
a middle flap, and so we could create the crease pattern by 
joining two middle flaps along their raw edges.
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Figure 12.33. 
Box-pleated corner flaps. Top to bottom: 1-unit flap; white-up 2-unit 
flap; colored 2-unit flap (the back side of the flap is white); 3-unit 
flap.
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Figure 12.34. 
Left: two edge flaps, about to be joined: folded form (top) and crease 
pattern (bottom). 
Right: A single middle flap, in folded form (top) and crease pattern 
(bottom).

The easiest way to join two flaps so that both the crease 
pattern and the folded form lie flat is to look for flap configura-
tions where the raw edges that are to be joined lie along a single 
line. Looking through our menagerie of edge flaps, you can see 
that the white-up 2-unit flap of Figure 12.28 has exactly that 
property. The raw edges to be joined lie along the vertical left 
side of the flap; and so we can join this flap and its mirror im-
age to create a single middle flap. Joining the crease patterns 
in the same way gives the crease pattern for the corresponding 
middle flap. This process is shown in Figure 12.34.

By grafting pairs of longer edge flaps, one can create lon-
ger middle flaps, and by grafting strips in between the edge 
flaps, one can create wider flaps as well. Not only that: there 
are further variations possible in which the layers are stacked 
differently, which one can construct by folding an example flap 
and then turning various of the pleats inside-out and/or by 
flipping them from side to side.
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Figure 12.35. 
Left: crease pattern for a 2 × 2 array of 2-unit-long flaps. 
Right: the folded form.

It is illustrative to consider how different patterns scale 
with large numbers. Suppose, for example, that you wanted 
to make a shape with 100 flaps (a centipede or sea urchin, 
perhaps). The centipede would be doable from a long rectangle; 
you’d just keep adding to the length to add each pair of legs. 
But suppose you wanted to make your figure from a square? 
In that case, although you could keep adding edge flaps to 
make the square larger and larger, all of those pleats crossing 
in the center would be effectively unused, wasted paper. But 
middle flaps constructed by box pleating are tileable, like the 
pattern grafts of scales that we explored in Chapter 7. One 
could, for example, create a two-dimensional array of such 
flaps, joining them edge-to-edge, as in the 2 × 2 array shown 
in Figure 12.35. 

With middle flaps, one can tile them into arbitrarily 
large arrays. Folding such arrays, however, can be quite the 
challenge! In general, there is no simple folding sequence for 
arrays of middle flaps, as the intermediate stages of each flap 
require the paper around it to become highly convoluted, so 
that the convolutions of the layers from one flap interfere with 
those of its surroundings. Still, one can imagine possibilities; 
instead of simply making shallow, overlapping scales as in the 
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Figure 12.36. 
Tiling four 5-unit middle flaps 
with no gaps between them.

Scaled Koi, one could use this technique to make a dense array 
of arbitrarily long flaps. Overlapping feathers, perhaps?

This technique of creating middle flaps essentially takes 
a flat sheet and “embeds” a flap, or several, at a fixed position 
within that flat sheet. One could then take that sheet and 
embed the created structure within yet another flap, creating 
a hierarchy of branched, tree-like structures. As long as the 
crease pattern keeps pleats perpendicular to the edges of its 
bounding rectangle, the result will be tileable, which leads to 
some interesting possibilities.

In most of the examples shown so far, there has been a 
gap between each flap and its neighbors. That makes it easy 
to visualize and easy to keep the pleats resulting from each 
flap separate, but including gaps certainly isn’t necessary. One 
could butt several flaps up against one another, as shown in 
Figure 12.36, which shows the pleats of four contiguous middle 
flaps. 

The crease assignment shown here is not perfectly correct; 
because all of the flaps are superimposed with one another, 
some of them must be wrapped around the others, which will 
change the parity of some of the creases. Once we have the basic 
structure, though, we can start to modify it in other ways. In 
the folded form, the edges of the central square line up with 
each other in the same way that the edges of a Bird Base do; 
we can replace that central square with the creases of a Bird 
Base to realize what is, essentially, a Bird Base extruded from 
the middle of the paper.
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Figure 12.37. 
Left: crease pattern for Crane on a Plane. 
Right: folded form.

I have used this technique to create the design shown in 
Figure 12.37, titled “Crane on a Plane.” The plane is a horizontal 
plane on which the crane is perched.

Remarkably, a single crane has a folding sequence, which, 
however contains a lot of pleats, closed sinks, closed unsinks, 
and various other nasty maneuvers, all of which seem like an 
awful lot of work to fold something that is not too far off from 
the first origami most people ever learn! But this crane is 
nothing more than a somewhat-more-complicated-than-usual 
box-pleated middle flap. Its pleats are all perpendicular to the 
edges, so that the raw edges of the paper lie entirely along the 
raw edges of the square on which the crane perches. And that 
means this crane has a special property: it tiles.

And so, having built up the crane by tiling four middle 
flaps together, we could create an array of such cranes from a 
single sheet of paper by tiling an array of these cranes together. 
How many? As many as we want—limited only by our paper 
size and folding fortitude. Figure 12.38 shows a progression of 
the Crane on a Plane tiling.

Consider, for example, a 32 × 32 array of crane tiles. Each 
tile requires a 28 × 28 grid of squares, so that the square of 
paper required would be 896 × 896 squares. For a 1-centimeter 
grid (which is a reasonably easily foldable size), the required 

© 2012 by Taylor & Francis Group, LLC



496 Origami Design Secrets, Second Edition

paper would be nearly 10 × 10 meters: pretty large, yes, but 
not entirely inconceivable.

And how many cranes would it contain? A 32 × 32 array 
would contain 1024 cranes. If one left six cranes unfolded at 
each of the four corners, the result would be exactly 1000 cranes. 
The Japanese folding classic Sembazuru Orikata translates to 
“The Folding of One Thousand Cranes.” The Sembazura style 
of folding involves cutting deep slits into a sheet to make ar-
rays of connected cranes. But here, we see, through the power 
of box pleating, we can—at least in principle—fold a thousand 
cranes in the fu-setsu sei-hokkei ichi-mai ori style: from a single 
uncut square.

Figure 12.38. 
Scaling up the crane tile. Two 
more doublings are required for 
a thousand cranes.
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The actual folding of 1000 cranes from a single uncut 
square will, of course, be left as an exercise for the reader.

12.5. More with Pleats
The power of box pleating lies in the property of universality. Its 
components—boxes of assorted sizes; flaps of various lengths, 
widths, and positions on the paper—these all possess a uni-
versal interface: the parallel pleat. Like LegoTM bricks, a small 
number of components can snap together to make an uncount-
able variety of shapes. If each structural element comes with a 
set of connections that are one-unit-grid alternating mountain/
valley pleats, then they can be connected to each other in both 
the folded form and the crease pattern in ways that give the 
desired three-dimensional shape for the former and the single 
uncut sheet of paper for the latter.

That property, in turn, raises a new question: Are there 
other useful structures that have this same interface? If so, we 
could add them to the general toolkit of box pleating, providing 
still more entries in the origami artist’s palette.

The interface between boxes and flaps is the alternating 
pleat. But this is, itself, a structure of interest, and has a role 
in decorative folding that extends well beyond (and, conceiv-
ably, before) the traditional Japanese art of origami. Back in 
17th-century Europe, it became popular among the wealthy 
classes to fold napkins into elaborate and decorative shapes; 
these napkins, although cloth, not paper, were stiff and accepted 
creases, and so allowed folding techniques and effects very 
similar to those possible with modern paper. This interest led 
to a series of manuals on this craft in Italy and Germany—some 
of which contains the first known usage of the terms “moun-
tain fold” (Bergfalte) and “valley fold” (Talfalte). Figure 12.39 
shows a plate from the book Trattato delle piegature by Mattia 
Giegher from 1639, which illustrates a variety of figures that 
could be created from folded napkins. We see in these figures 
the basic mechanisms of box pleating and some truly remark-
able folding creations (even allowing for some artistic license 
of the illustrator).

It should be noted that none of this work includes most 
of the techniques we have described here: there are no middle 
flaps, boxes, or trains (which would be quite an accomplish-
ment in 1639), and certainly no tiling cranes. (However, Fig-
ure 12.39 #3, in the lower right corner, looks suspiciously like 
an Elias Stretch, which we will shortly meet.) But there are 
a remarkable array of animal and object forms, and most of 
these result from the application of a few simple techniques 
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Figure 12.39. 
A plate from Giegher’s Trattato delle piegature (1639). Image courtesy 
of Joan Sallas. 

to parallel-pleated cloth. We can identify, develop, and apply 
these techniques to paper as well. But, going further, we can 
integrate them into the collection of other structures that we 
have already identified as part of box pleating.

Pleats, by themselves, can create texture and repeating 
patterns. A set of alternating mountain and valley folds cre-
ates parallel lines in visual perception. By stretching out one 
side of a set of pleats, one can create radial lines as well—and 
a smooth curve, or a reasonable approximation thereof, along 
the stretched out edge, as illustrated in a simple example in 
Figure 12.40.

Nearly everyone has done something like this: the per-
son is rare who has not folded up a sheet of paper to make an 
impromptu fan. To turn this into an origami design problem 
(and to keep up your skills), you might ponder the following 
problems, one analytic, one practical.
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Figure 12.40. 
Folding sequence for a pleated 
circular coaster.

1. Begin with a rectangle, creased in half the long way.
Fold a series of equal pleats along its length.

2. Pinch in the middle and fan out the
edges.

3. The result is a near circle.

First: what is the minimum length rectangle needed for the 
ends to reach one another, i.e., to complete the circle? There are 
two levels of answer: a quick, simple approximation (for which 
you should find a value close to 1:1.57); and then, a more ac-
curate answer that takes into account the height of the central 
region (and therefore, the number of pleat pairs).

Second: if you include a bit of excess length in the rect-
angle, can you find an elegant way of joining the ends after 
you make the circle? There is no single answer to this, but it’s 
worth pursuing; when folded from paper money, this circular 
fan makes both a good coaster at a bar, and (depending on the 
denomination) a good tip after you’ve finished your drink. 

And what might one use this structure for in origami? 
Besides the examples shown in Trattato delle piegature and 
subsequent napkin-folding, a fan-fold shows up in Yoshizawa’s 
peacock and many others’ origami renditions of this and similar 
subjects. You will see it in one of my own designs in the folding 
instructions at the end of this chapter.

Simple straight pleats are only the beginning, though. 
The possibilities really begin to explode when we start adding 
creases that run across the pleats.

We can add cross folds efficiently by making the cross folds 
first and then pleating. Merely the presence of the additional 
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Figure 12.41. 
Folding sequence for a simple doubly pleated texture.

horizontal edges adds texture and visual structure to the set 
of pleats, as shown in Figure 12.41. (Use an 8 × 8 grid folded 
as in Figure 12.23 to practice with.)

As simple as this is, it offers room for variation within the 
existing folds, by altering the spacing of both the mountain and 
valley pleats. It also allows for further variation by adding folds. 
For example, one can reverse-fold the edges between each of 
the vertical ribs, as shown in Figure 12.42.

This technique of pleating and then reverse-folding be-
tween the pleats has been used by several origami artists, 
including John Richardson (for his “Hedgehog”) and David 
Petty (for his “Cactus”). You’ll see an example of it in one of the 
figures in the folding instructions for this chapter.

It is also possible to change the direction of such pleats; 
they don’t need to stay straight. A simple and straightforward 
approach is to start with a straight section of pleats, then 

1. Begin with the colored side up. Form
a mountain fold on the topmost crease,
then pleat it down to align with the next
crease.

2. Repeat with two more pleats.

3. Pleat vertically on the existing creases. 4. A simple pleated texture.

© 2012 by Taylor & Francis Group, LLC



501Chapter 12: Box Pleating

Figure 12.42. 
Further transformations on the doubly pleated array.

Figure 12.43. 
Stretching a doubly pleated region to impart a curve.

stretch each pleat asymmetrically; this allows either positive 
or negative curvature, as shown in Figure 12.43. 

One can also stretch an array of pleats in the opposite 
direction to create a concave surface, or in both directions in 
different places to create smoothly varying apparent curvature. 
In both cases, you are reducing the size of each horizontal pleat 
on one side or the other, changing each from a parallel-crease 
pleat to an angled pleat. The maximum bend, and the limit 
of stretching, occurs when one side or the other is entirely 

5. Continue with the
doubly pleated form.
Reverse-fold the raw
edges between the pleats
as far as possible. Valley-
fold on front and back
layers to match.

6. This gives an
array of sharp
points or scales.

7. Sinking the vertical
edges transforms the
array into a series of
triangular teeth.

8. Like this.

5. Stretch the outside of
each pleat apart to create a
curved array.

6. Grasp each pleat and pull
it apart with a twist; then
move on to the next.

7. A curved doubly pleated
section.
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Figure 12.44. 
Crease pattern of a doubly pleated structure. 
Left: before stretching. 
Right: after stretching.

consumed. Great bends are possible by making deeper pleats 
to start with, and a wide variety of forms are possible; British 
artist Paul Jackson has created a wide variety of bowls and 
abstract shapes using such stretched pleats.

It is instructive to pull apart one of these forms to exam-
ine the crease pattern. The crease pattern for the structure of 
Figure 12.43 is shown in Figure 12.44.

As you can see, the angles of the valley folds have changed. 
They are no longer parallel; they are angled, and that is what 
gives the overall curve to the structure. The crease pattern has 
obvious translational symmetry; each pair of vertical columns 
of panels is repeated horizontally, so that the overall form is 
entirely specified by a single pair of columns. Let’s focus in on 
a single column pair, as shown in Figure 12.45.

Narrowing our focus to a single column of the pleated pat-
tern lets us consider more broadly what the possibilities are for 
pleated forms. This shape is nothing more than a simple strip 
of paper folded in half and then crimped with angled folds. We 
can turn this strip into a pleated form by making use of the 
translational symmetry: the fact that the left and right sides of 
the strip are superimposed in the flattened folded form means 
that we can, in principle, glue together multiple strips along 
their edges. That is, we can graft vertical strips together. We 
can do so with simple parallel crimps; we can do so with angled 
crimps; but we can do so with far more complex treatments of 
this vertical strip.
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Figure 12.45. 
A single column, crease pattern 
and folded form.

Figure 12.46. 
A reverse-folded pleated shape. Left–right: Crease pattern for a single 
strip; the folded form of the strip; the folded form of the pleated form; 
the crease pattern of the pleated form.

A single crimp is, as we have seen, nothing more than a 
pair of closely spaced reverse folds: an inside reverse fold fol-
lowed by an outside reverse fold. There is nothing that says 
that the reverse folds must come in pairs, though. One could, 
in fact, create quite a complex configuration from a folded strip 
by reverse-folding at several angles, as shown in Figure 12.46. 
Could this pattern be replicated in a full array of pleats? Of 
course, and the result is also shown in the figure.
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Both reverse-folded pleats as in Figure 12.46 and crimped 
pleats as in Figures 12.41–45 can be stretched horizontally 
into circular form, as we did with the dollar-bill coaster. This 
treatment has been the basis of a wide variety of decorative 
forms. You can see examples in the Trattato delle piegature 
plate in Figure 12.39; it is the basis of a magic routine called 
the Troublewit, and numerous origami and paper artists have 
incorporated these stretched pleated forms into their own de-
signs. Of course, these concepts can serve entirely alone as the 
basis of an origami artwork, but they have a special connection 
to box pleating. Since the basic crease network here consists 
of alternating parallel pleats, such pleated forms can easily be 
integrated into larger constructions that include box-pleated 
flaps and box-like shapes. All three usages of pleats are in my 
Organist, shown in Figure 12.47, whose instructions are given 
at the end of this chapter.

12.6. Elias Stretch
In box-pleated models, the pleats can and do run in both di-
rections, vertically and horizontally. Flaps are defined by the 
diagonal folds, which, like the pleats, alternate from section 
to section. Often, though, there is a dominant direction to the 
pleats; more run vertically than horizontally or vice versa. 
When one direction dominates, a natural way to develop a 
folding sequence is to fold all of the pleats in the dominant 
direction.

Figure 12.47. 
My Organist combines box-
pleated flaps (for the human), 
stretched pleats (for the skirt, 
keyboard, and pedals), and 
boxes (for the seat and main 
body).
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Figure 12.48. 
Folding sequence for an Elias stretch.

Some of them, though, will need to be converted from 
vertical to horizontal; every edge, corner, or middle flap is a 
mixture of vertical and horizontal folds, along with a handful 
of alternating diagonals. In fact, the diagonal folds typically 
separate regions of vertical from regions of horizontal (we will 
see more about this in the next chapter). When a group of flaps 
runs in a row along an edge, the diagonals from adjacent flaps 
create triangle “wedges” of paper whose crease directions must 
be rotated.

Fortunately, this process can often be carried out one 
wedge at a time. All pleats are first formed running in the domi-
nant direction, say, the vertical direction. Then, by separating 
particular pairs of pleats and stretching them apart, it is pos-
sible to add, one by one, the pleats that run in the horizontal 
direction. This process is shown in Figure 12.48. 

1. Pull a single layer out to
the left, stretching out the
pleat.

2. Fold down the top
edge, making diagonal
creases at 45°.

3. Mountain-fold the
top edge behind.

4. Pleat the edge
again and close
up the model.

5. Finished Elias
stretch. The pleat
has now been
turned into a gap
between two flaps.
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This maneuver occurs often in the box-pleated designs 
of Neal Elias and Max Hulme. Elias popularized the style of 
box pleating in the 1960s and early 1970s; for this reason, the 
maneuver in Figure 12.48 has come to be known as the Elias 
stretch. You will find many examples and variations of the Elias 
stretch in the models whose folding sequences appear at the 
end of the chapter.

12.7. Comments
Box pleating offers an alternative design approach for generat-
ing bases with specified structure in which both the design and 
the folding method can be simpler than those generated by the 
tree method; in fact, the design can often be worked out in its 
entirety with no more than a pencil and paper.

The payoff of using box pleating is twofold. First, the 
resulting crease pattern can, due to its regularity, often be 
constructed by a linear folding sequence with well-defined refer-
ence points. The crease pattern is simplified and the foldability 
is further enhanced if all flaps have lengths that are integer 
multiples of a common small quantity; in this case, the crease 
pattern lies within a regular square grid. In such models, one 
can start the folding sequence by creasing the paper into equal 
divisions one way and/or the other, at which point many of the 
creases of the model will exist.

If you crease the paper into a complete grid with one crease 
for every fold, you will have created many of the creases in 
the model. But you will have also created many creases that 
are not part of the base, and in fact, every flap or surface will 
be covered with the grid of creases. These extraneous creases 
can be distracting to the eye in the folded model. Although it 
is harder to devise such a folding sequence, it’s preferable to 
minimize the number of unnecessary creases when precreasing 
the model. In such cases, a cleaner model will be the result if 
you measure and mark the positions of the minor creases.

The second payoff for using box pleating is that box-pleated 
structures for obtaining flaps are compatible with box-pleated 
structures for constructing boxes. Thus, one can make complex 
three-dimensional structures containing both two-dimensional 
flaps and three-dimensional solids. Some of the most fantastic 
and downright unbelievable origami structures are designed 
using box pleating: hundreds of designs by Neal Elias, includ-
ing human figures and compositions of several figures (a bull, 
bullfighter, and cape from a single sheet); various vehicles by 
Max Hulme (a Stephenson Rocket train engine, a double-decker 
bus); and of course, the model that started it all, Mooser’s 
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Figure 12.49. 
Black Forest Cuckoo Clock, a 
box-pleated design from a 1 × 10 
rectangle.

Train. Box pleating also combines nicely with the use of pleats 
to define textures, a combination that has been exploited bril-
liantly by modern masters such as the late Eric Joisel and 
Satoshi Kamiya.

In recent years, the ethic of one square for complex models 
has grown strong, but during the 1960s, 1970s, and 1980s, the 
use of rectangles was still common. Mooser’s Train was folded 
from a rectangle, of course, as were many of the designs of 
Neal Elias. In keeping with this tradition, in the early 1980s, 
I developed a Cuckoo Clock from a rectangle, which I subse-
quently enhanced with many of the techniques I’ve described 
in this section. I will close this section with this model, shown 
in Figure 12.49, and its instructions. It illustrates all of the 
techniques of box pleating: the creation of three-dimensional 
boxes, numerous flaps, and their combination and connection. 
Its folding sequence—at 216 steps—is not for the faint of heart! 
But if you succeed in folding it, you may find within it inspira-
tion for your own box-pleated designs.

Box pleating is in some ways an ancient technique; it has 
roots in the centuries-old art of napkin folding and at least some 
of the techniques employed today can be found in one form or 
another in the old manuals. Many of the techniques such as fan 
folding can be found as well in the work of more modern artists, 
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again, outside the world of traditional origami. However, once 
those techniques merged into the rapidly expanding world of 
origami in the late 20th century, there was a great leap forward 
in the origami art, and the works of Elias, Hulme, and others 
testify to its power.

But there was still one more step to take. With all its 
power, classic box pleating as I have described in this chapter 
still has limitations: it worked especially well for designs from 
arbitrary rectangles but the job gets much tougher if we take the 
constraint of folding from a square. The development of circle 
packing and tree theory showed that it was possible to create 
highly complex forms from a square (or any other shape), but 
there was a price to pay, in complexity, irregularity, and folding 
difficulty. Wouldn’t it be wonderful, though, if the regularity of 
box pleating could be combined with the universality of circle 
packing, tree theory, and molecules? It can be; it is wonderful; 
and that will be the subject of the next chapter.
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Folding Instructions

Organist

Black Forest Cuckoo Clock
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Organist

1. Begin with a 4x1 rectangle, white side up. Fold in
half the long way and unfold. Rotate it to be vertical.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11074-13&iName=master.img-006.jpg&w=239&h=180


511Chapter 12: Box PleatingFolding Instructions: Organist

4. Fold and unfold
along angle bisectors
in three places.

3. Fold the left edge in to the
vertical center line.

2. Fold and unfold horizontal
creases at each of the divisions
shown. Although you can find
the divisions by folding,
measuring and marking will
avoid putting extraneous
creases on the paper.

0
160

10
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14

20

26

33

38

41
43

50

54
551/2
56

59
61

64

571/2
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7. Fold and unfold along the
angle bisectors at the sides
partway down.

5. Unfold the left edge. 6. Repeat steps 3–5 on the
right.

3–5
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10. Make eight vertical
creases.

9. Add some horizontal
creases. Turn the paper over
from side to side.

8. Fold and unfold.
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11. Add some horizontal
creases.

13. Add some horizontal
valley folds.

12. Fold along the vertical
valley folds.
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15. Add some horizontal
valley folds. Turn the model
over.

14. Fold eight vertical valley
folds.

16. Fold sixteen vertical valley
folds.
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19. Fold the corners upward
on the existing creases.

18. Fold the bottom flap
upward on the existing crease.

17. Add some horizontal
valley folds.
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22. Reverse-fold in and out
using the creases you just
made.

21. Unfold to step 19.20. Fold the corners back out
to the sides.
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24. Pleat on the existing creases.23. Fold the flap back down.
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25. Pleat the top in 16ths, the bottom in 32nds, and
the middle in 4ths; nearly all the folds come from
existing creases. The top and bottom swing over to
the right. Rotate the model 1/4 turn counterclockwise.

26. Elias-stretch the top of the
white pleated layers.

1/4
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27. Continue the stretch. 28. Continue the stretch.

29. Continue the stretch. 30. Repeat on the right.

26–29
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31. Reverse-fold the white flap in two places. The
horizontal mountain folds lie on existing creases while
the diagonal valley folds hit the raw edges at the same
location as an existing crease.

32. Reverse-fold the 3rd and 6th edges. Each reverse
fold consists of two layers; the creases in the layer
underneath run all the way back to the 90° bend.

33. Stretch one corner out to the side. 34. Mountain-fold the edge underneath, stopping at
the diagonal pleat. (This is half of an Elias stretch.)
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35. Valley-fold the edge upward. 36. Mountain-fold the edge underneath.

37. Close up the edge. 38. Repeat on the right.

33–37
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39. Repeat on the middle layers.

40. Reverse-fold the right flap downward. Note that the
two diagonal folds in each layer are above and below
an existing horizontal crease.

33–37
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41. Reverse-fold the right flap again with a pair
of reverse folds. The upper fold lies on an existing
crease; the lower diagonal folds meet an existing
crease at a folded edge.

42. Add another pair of reverse folds. The leftward
one is diagonal; note that it hits an existing crease.
The rightward one lies on an existing crease.
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43. Add one more pair of reverse folds, both diagonal.
Note that both hit the folded edge at the existing crease.

44. Flatten the model completely, squaring up and
aligning all the layers of the pleats.
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47. Fold and unfold through a single layer.

45. Lift up one layer. The model will not lie flat. 46. Fold the near edge down to the bottom. The crease
doesn’t run all the way across the model so the paper
does not lie completely flat.

49. Mountain-fold the edge on the existing crease,
making a small squash fold at its bottom.

48. Fold one layer over to the right and simultaneously
fold the bottom left corner up along a diagonal crease.

50. Close up the two open layers.

51. Repeat behind.

45–50

52. Crimp the right side of the T downward, crimping
each pleat individually so that no two pleats are trapped
together.

53. Crimp the left side of the T upward, weaving the pleated
layers between each other so that no two pleats are trapped
together.
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57. Slightly squash-fold the hands. 58. Double-rabbit-ear the
top point.

59. Reverse-fold the point
to the left.

60. Open out the top flap and squash it
down over the back of the head, leaving
it rounded and three-dimensional.

61. Reverse-fold the foot.
Repeat behind.

62. Reverse-fold the toe and
narrow the foot with mountain
folds. Repeat behind.

54. Fold a rabbit ear from the near
vertical flap. Repeat behind.

55. Crimp the arms upward. 56. Reverse-fold the tips of
the flaps.
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63. Open out the base of the model and flatten it,
leaving the organist at the left and the pleated section
at the right standing upright.

64. Mountain-fold the edges underneath
so that they align with existing creases.

65. Spread-squash two corners.

66. Open out the sides and fold the base up and
toward the organist. The rightward corners get tucked
underneath the spread-squashed flaps you made in
the last step.

67. The organist and keyboard assembly
are not shown in steps 67–68. Fold the
music stand so that it stands upright.
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68. Fold the two flaps out to
the sides.

69. Grasp the organist and pull
her upward so that the colored
layers below her spread apart.
(The keyboard assembly is still
not shown here.)

70. Pull the sides of the seat
out and form it into a box.
Square up all of the edges of
the box.

71. Like this. Now we’ll finish the
keyboard; the next step shows the
keyboard but not the organist.

72. Spread the pleats out
to the sides evenly.

73. Swing the keyboard and
pedals down. Arrange the
hands and feet of the organist
over the keyboard and pedals.

74. Finished Organist.
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1. Begin with a strip of paper in the proportions 10:1, at least 16 by 160
cm (or 8 by 80 inches), colored side up.

For larger models, it is difficult to find paper of the necessary length.
However, you can cut four strips that are, respectively, 16 by 33, 16 by
45, 16 by 40, and 16 by 42 and tape them together where noted by the
italicized text. If you use these lengths to make your starting rectangle,
then the tape seams will be hidden inside the model.

Steps 2–10 of the model are devoted to locating the major horizontal
creases. There are two ways of getting these starting proportions. If you
want to locate all the creases only by folding, begin with step 2. However,
you will create many unnecessary creases during the folding process that
will show up on the final model and that may be confusing later in the
folding sequence. The easiest and cleanest method of locating the major
horizontal creases is to measure and mark the locations of the creases;
if you choose to do this, then you may skip to step 11.

The notes along the right side indicate from which part of the paper each
part of the model is derived.

clock hands

clock face

transition to bird

twist

bird and door

connection to
top of deer head

0

8

8

12

20
6

26
4

30
3

33

8

41
antlers and nose

ears
peak of roof

leaf pair 8

6
47 249

3
52

4
56

9

65 leaf pair 7

9

74 leaf pair 6

9

83 leaf pair 5

11

94 leaf pair 4

9

103 leaf pair 3

9

112 leaf pair 2

11

123 leaf pair 1

reduction

transition

8

2131
133

pine cones

8

3

8

141
144

4
152

156

160
4

pendulum

Tape colored
side here

Tape colored
side here

Tape colored
side here

42 units

40 units

45 units

33 units

16 units

Black Forest Cuckoo Clock
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2. Fold the
lower left
corner up to lie
along the right
edge.

3. Mountain-fold
the bottom corner
behind.

4. Repeat steps 2–3. 5. Repeat steps
2–3 eight more
times (until you
run out of paper).

6. Unfold to step
2.

2–3 2–3, 8×
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7. Now fold the
paper in half
lengthwise and
unfold.

8. Fold the sides
in to the center
line, crease
lightly, and
unfold. (The
creases in steps
8–10 are only
used to get
reference points
in step 11; they
should be made
as lightly as
possible.)

9. Divide the
paper into
eighths, again,
creasing lightly.
Turn the paper
over.
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10. Divide the
paper into
sixteenths,
again, creasing
lightly, and turn
the paper back
over.

11. Using the
vertical and
diagonal creases
as guides, add
the horizontal
creases shown.
(If you have
skipped steps
2–10, you may
measure the
locations of the
horizontal
creases.)

12. For the rest
of the model,
ignore the light
creases you
made in steps
2–10 and use the
horizontal
creases from
step 11 as your
major
landmarks. Fold
and unfold
vertically, then
add the indicated
diagonal creases.0
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20

26

30
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41
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13. Now add
some vertical
creases.

14. Now add
some horizontal
creases.

15. Add more
vertical creases.

© 2012 by Taylor & Francis Group, LLC



535Chapter 12: Box PleatingFolding Instructions: Black Forest Cuckoo Clock

16. Add more
horizontal creases
and turn the paper
over.

17. Add more
vertical creases.

18. Add more
horizontal creases.

© 2012 by Taylor & Francis Group, LLC



536 Origami Design Secrets, Second Edition

19. The precreasing is finished;
now we begin folding in earnest.
Beginning at the top and using
the existing creases, fold the
sides in as you fold the top of the
rectangle down.

20. Fold the sides in as you
fold the flap upward.

21. Continue narrowing
the flap by repeating step
19–20 twice, then step 19
once more.

22. Swing the narrow flap (which
will be the pendulum) upward.

23. Simultaneously fold the
sides in and pleat horizontally
on existing creases.

24. Simultaneously fold the sides
back as you swing a layer down
(above) and up (below).

19–20, 2×
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25. Repeat steps 23–24
twice, then step 23 once
more.

26. Fold the thick narrow
flap up from behind.

27. Repeat steps 23–24.

30. Pleat again.28. Pleat. 29. Squash-fold the lower
corners; simultaneously fold the
top down and the sides above the
squash folds inward.

23–24

23–24, 2×
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31. Squash-fold the hidden
colored edge on each side.

32. Fold the flaps
back to the outside.

33. Repeat steps 23–24 on the
next rectangular region.

34. Pleat.
35. Fold the sides inward,
incorporating a reverse fold at each
top corner and squash-folding the
nearly hidden corners at the bottom
similarly to steps 29–31.

36. Repeat steps 33–35. 37. Repeat steps 27–32. 38. Repeat steps 33–35.

23–24

33–35

27–32 33–35
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42. Turn the paper over. 43. Squash-fold the corner.
All of the pleated layers go to
the left. In this and
succeeding steps, don't extend
the vertical creases any farther
than you have to, so that the
top of the paper remains
unfolded (and the model does
not lie flat).

44. Squash-fold the corners
and pull the indicated edges
downward.

39. Repeat steps 33–35 again. 40. Repeat steps 33–35 one
more time.

41. Pleat in two places.

33–3533–35
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45. Pull the corners out to
the side.

46. Carefully mountain-fold
the sides through all layers.

47. Pleat. The mountain fold
lies on an existing crease.

48. Reverse-fold the
corners.

50. Pull out some
loose paper.

49. Fold the flap up and
back. Turn the paper over.
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51. Sink the edges.

52. Push in two layers and pull
both layers up to make a point.

53. Turn the model over.

55. This is what the entire model
looks like. Turn it over.

54. Fold the sides in.
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A

56. Fold a Waterbomb Base. 57. Reverse-fold the corners. 58. Petal-fold.

59. Fold the tip down. 60. Turn the top inside-out
and turn the paper over.

61. Fold the flaps out to the sides.

64. Pleat the next layer to match. 65. Wrap one layer around to the
front. Layer A stays in place.

62. Fold the two points upward. 63. Swivel one layer upward.
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72. Fold one-third of the edge
underneath on each side.

73. Narrow further with mountain folds.

70. Squash-fold the point. 71. Wrap one layer on each side of the point.

68. Fold the right point downward on an
existing crease and swing it over to the left.

69. Mountain-fold both layers underneath.

66. Pull out some loose paper. 67. Repeat steps 63–66 on the left.

63–66
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74. Bring the layers on the left to the front. 75. Fold the left point down. Note that this
is slightly different from step 68.

76. Narrow the point with valley folds. 77. Fold the lower half upward and tuck its
left side under the white paper.

78. Fold the point over to the left. 79. Bring the other point to the front.
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80. Fold the sides in. The creases don't go
all the way to the other end.

81. Pleat. Turn the
paper over.

82. Reverse-fold
the corners.

83. Fold the top down. 84. Pull out one layer
from each side.

85. Turn the paper
over.

86. Sink the edges. These
creases connect up with the
ones on the bottom.

87. Swing the lower
portion of the model up
to the right. The model
will not lie flat.

88. Fold the left side over and the top edge
down and flatten. This fold connects to a
crease on the rest of the model.

89. Pull out a single
layer of paper.
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90. Fold the edge
back down.

91. Fold the edge up again and
tuck paper inside at the left.

92. Swing the rest of the
model over to the left.

93. Repeat steps
88–91 on this side.

94. Sink the bottom edge (this
connects with creases on the rest of
the model, too).

95. Fold the flap to the left.

96. Closed-sink the flap. 97. Swing the rest of the
model over to the right.

98. Repeat steps 95–97.

88–91

95–97
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99. Fold the middle pair of edges out
to the sides (two layers together at the
top). Simultaneously, squash-fold the
top two points and the bottom point.

100. Turn the paper
over.

101. Squash-fold the top points
and fold the edges outward (the
vertical creases line up with the
edges underneath).

102. Unwrap the two top
points. Mountain-fold the top
of the clock face. Closed-sink
the bottom point.

103. Fold and unfold. 104. Closed-sink the edges (it
is important that the sinks be
closed, not open).

105. Turn the model over. 106. Squash-fold in two places and swing
the rest of the model around to the right.
The leftmost valley fold occurs on an
existing crease. In the squash fold, two
layers go to the left and six go to the right.

107. Fold the vertical edges
out to the side and swing the
rest of the model upward.
Two edges go to the left; four
edges go to the right.

6 edges2 edges
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108. Same thing again; one layer
goes to the left, two to the right.

109. Wrap one layer
from front to back.

110. Fold down four edges and
flatten the model completely.

111. Finally, the model will lie flat; this is what it
looks like in its entirety. Turn it over.

112. The clock face is not shown in this step. Fold
the horizontal edges upward and downward; at the
same time, swing the clock face around as necessary
and fold one layer at the right toward the right.

113. Fold upward at right angles on existing creases
and turn the model over (so that the clock face and
body—the two ends—are pointing downward).
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114. Push in the sides; on
each side, fold two of the
edges upward, one
downward.

115. Pull out a single
layer from the top and
bottom of each side.

116. Fold two layers
upward and one
downward on each side.
The box-like region
becomes taller and
deeper.

117. Push the sides
in as you pull paper
out from the top and
push down the
bottom of the box.
Flatten the model
completely.

118. Reverse-fold the
top two points
downward.

119. Fold the small
points down into the
pockets.

120. Swing the clock
face upward.

© 2012 by Taylor & Francis Group, LLC



550 Origami Design Secrets, Second Edition

121. Swing the clock face behind and
fold the smaller bundle of flaps upward
in front.

122. Fold the sides in
and the bottom up.

123. Turn the model over.

124. Fold a single layer down.

125. Fold the side over and
incorporate the reverse fold
shown.

126. Bring a layer to the front.
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127. Repeat steps 125–126
on the right.

128. Bring the clock
face to the front and
swing it down.

129. Turn the model over.

130. Pleat the sides of the top and
fold the top in half. At the same
time, pull the sides of the clock
body out to stand at right angles
to the clock back.

131. Squeeze the top of the
model together and smooth
out the layers along the roof.

132. Side view. Fold
two layers over to
the left and release
the trapped paper at
the top.

© 2012 by Taylor & Francis Group, LLC



552 Origami Design Secrets, Second Edition

134. Closed-sink
the edge.

138. Reverse-fold the
corner.

142. Fold the small
colored point upward.

133. Close up again.

137. Unwrap the white
hood and reverse-fold
the bottom corner.

141. Fold the left edge over
to the right and pull up the
loose paper at the top to
make a hood.

135. Pull out a
single layer.

139. Reverse-fold the top
corner and mountain-fold
the edge inside.

143. Repeat steps
132–142 on the far
side.

136. Mountain-fold the
white layer inside.

140. Fold the
point down.

144. Mountain-fold the white
strip (which connects the
clock face to the deer head)
behind. (The back of the
clock will interfere with this,
but don’t worry about that.)

132–142
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145. Outside reverse-
fold the white strip.

146. Swing the clock face around and
flatten the strip; everything from the
clock face to just below the deer’s head
will lie flat.

147. Fold the flap down.

148. Swing the paired flaps upward and
swing the rest of the model down between
the paired flaps and the clock face.

152. Again bring the
vertical strip in front of
the clock face.

149. Fold the clock face
up to the right, swinging
it around from behind.

150. Bring the vertical
strip in front of the clock
face.

151. Flip the clock
face around its center
axis.

153. Fold the connection between the clock
face and deer head around and behind; at the
same time, fold the paired flaps down
through the opening in the clock face. At this
point, the clock face no longer interferes
with the clock body, but should sit more or
less within the clock body.
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154. This view shows the relative
positions of the clock face and the deer
head. The clock body is not shown, and
the view is of the back of the clock face.
Turn over.

155. The clock face is not shown in
this view. Mountain-fold the vertical
part in half and swing the resulting
flap up to stand out at right angles
to the clock body.

156. Crimp the T-shaped
flap downward.

157. Open out the pleated part. 158. Fold the colored flaps along the top
and bottom of the white region up and
down, respectively; turn the model over.
We will be working on the colored back
side of the white pleated region for steps
159–165.
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159. Fold and unfold. 160. Fold and unfold.

161. Fold and unfold. 162. Pleat. Each mountain fold lies 1/4
of the way between the two adjacent
valley folds.

163. Refold the pleats you
undid in step 157 and turn
the model over again.

164. Pinch the pleated
flaps at their base and
fold them downward.

165. Spread the sides of the
pleated flaps apart. They will
become the pine cone weights.

166. Reverse-fold each
horizontal pleat upward
between the vertical
pleats. There are 18
such folds on each of
the two pine cones.

167. Squeeze
the bottom of
the pine cone
together.

168. Mountain-fold
the corners at the
bottom of the pine
cone to lock it.
Repeat on the other
pine cone.

169. Adjust the
position of the pine
cone weights so that
they hang straight.

170. Squash-fold
the bottom point
symmetrically. The
valley fold lies on
an existing crease.

© 2012 by Taylor & Francis Group, LLC



556 Origami Design Secrets, Second Edition

171. Squash-fold the flap
over to the left and swing all
of the layers outward.

172. Squash-fold the
flap over to the right.

173. Again. 174. Valley-fold
one point down
to the left.

175. Valley-
fold the flap
downward.

176. Fold the corners
into the interior (fold
the two far layers
together as one).

177. Fold the
bottom corners
into the interior.

178. Squash-fold
the point so that it
stands perpen-
dicular to the
pendulum.

179. Like this
(perspective
view).

180. Crimp the
sides of the leaf
downward; it will
not lie flat.

181. Mountain-
fold the edges to
lock the crimps
into place.

182. Like this. 183. The pendu-
lum and pine cone
weights are now
complete.

184. Now we'll work
on the clock face. Fold
one of the two flaps
standing out from the
face upward.

185. Fold the
corners in to meet
at the center line.

© 2012 by Taylor & Francis Group, LLC



557Chapter 12: Box PleatingFolding Instructions: Black Forest Cuckoo Clock

186. Close-up of
the bird's head. Pull
out the loose flap
of paper.

187. Fold
and unfold.

188. Fold
and unfold.

189. Fold
and unfold.

190. Fold the flap
over to the right.

191. Repeat
steps 187–189.

192. Fold the top point
down, incorporating the
creases shown.

193. Petal-fold. Bring
the two points upward
together.

194. Squash-fold (like
half of a petal fold).

195. Pull out a single
layer of paper.

196. Fold the point
back upward.

197. Fold a rabbit ear that
stands straight out from the
clock face.

198. Perspective
view of step 197.

199. Crimp the
head downward.

200. Slide the
lower half of the
beak downward.

201. Finished bird. Now,
we will attach the clock
face to the clock body.

187–189
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202. Place the clock face over the
opening in the body. Tuck the four tabs
along the sides into the slots in the
clock face and hook them over the
edges inside the clock face. This will
lock the face securely to the body.

204. This shows the entire
model thus far. Now, we will
work on the deer’s head.

203. Push in the side of the top
point and hook it around the
uppermost leaf-flap, between
the layers of the roof. The right
side is shown completed.

205. Squash-fold the
top of the head,
wrapping the excess
paper around the
thicknesses below the
ears. Repeat behind.

206. Push in the back of
the ear (which is quite
thick) and slightly squash-
and petal-fold it, leaving
it three-dimensional.
Repeat behind.

207. Fold a rabbit ear
from the top of the
white flap (which will
become an antler).

208. Mountain-fold the
point behind.
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209. Fold another
rabbit ear.

210. Mountain-fold the
rabbit ear to the rear.

211. Fold another
rabbit ear.

212. Push in the front of
the antler (at the left) by
making a partial rabbit
ear. At the same time, lift
up the points in back (at
the right) and spread them
out. They will be three-
dimensional.

213. Repeat steps
207–212 on the other
antler.

214. Squash-fold each of the flaps
downward (they will be the leaves).
Offset each squash fold, so the leaves
alternate and overlap each other.

215. Crimp and swivel-fold each
leaf as you did in steps 180–182.

216. Finished Black Forest Cuckoo Clock.

207–212
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13
ircle packing, molecules, and tree theory had 
the potential to change the world of origami 
when they began to be widely used in the mid-
1990s and going forward, but they quickly 
ran up against a barrier: although one could, 

in principle, design arbitrarily complex tree-like structures 
of theoretically perfect efficiency, in practice, the resulting 
crease patterns were both highly irregular, making them 
difficult to precrease, and all of the folds in the pattern were 
highly coupled to one another, making them difficult to break 
down into a simple step-by-step folding sequence. The latter 
property is, unfortunately, often unavoidable. The vast major-
ity of theoretically possible flat-foldable folding patterns are 
in this category; it is, in some sense, an accident of history 
that most published origami works have had step-by-step 
folding sequences, because they were discovered almost en-
tirely through a step-by-step process of exploration. But the 
irregularity is not necessarily something that we, as origami 
designers, must live with.

Circle/river packing often leads to irregularity, even if the 
circles themselves come in only one or a few sizes. My software 
tool, TreeMaker, constructs a circle-packed solution for any 
user-specified stick figure, but even when you have the complete 
crease pattern, the problem still remains: how do you transfer 
the pattern to the folded paper? With a computer program, 
you could perhaps print out the pattern, but then you have to 
contend with printed lines on the finished form. If you want to 
fold the pattern with no visible printed lines, then there may be 
tens, or even hundreds, of vertices with no easily constructible 
method. I developed another tool, ReferenceFinder, which can 

Uniaxial Box Pleating

C
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find folding sequences to locate individual folds or lines, but 
this is an incredibly tedious process with a circle-packed design 
if there are tens of points and/or lines to be found.

It is not surprising, then, that artists have found variations 
on circle packing that lead to far more tractable (and therefore 
foldable) designs. One of the most powerful and versatile is also, 
surprisingly, one of the oldest toolkits of technical design: box 
pleating, which we met in the previous chapter.

The term “box pleating,” as it is used now, actually takes 
in two distinct sets of techniques. In one form of box pleating, 
one creates three-dimensional structures in which the walls 
meet at right angles to form boxes and partial boxes (hence the 
first part of the name). This form of box pleating is inherently 
three-dimensional; examples are to be found in Mooser’s Train 
and in the 3D works of Max Hulme and Neal Elias, such as the 
former’s “Stephenson Rocket” and the latter’s “Dump Truck.” 

The other form of box pleating results in flat shapes with 
arbitrary flap combinations, often incorporating the design 
pattern we now call the “Elias stretch.”  Both styles of folding 
have most major folds running at multiples of 90° and lying on 
a grid, with secondary creases at multiples of 45°, and it is in 
fact difficult to distinguish from a crease pattern whether the 
model is 3D or flat without careful examination or even trial 
folding. For this reason, it has become common to call any fold 
in which most creases lie on a square grid a “box-pleated fold.” 
Many of the designs from the “golden age of box pleating” in the 
late 1960s and 1970s used both 3D and flat box-pleated forms 
as part of their structure.

Since I have already written about box formation, I’ll focus 
now on the subset of box pleating in which the major creases lie 
on a square grid, the secondary creases run at multiples of 45°, 
and the base folds entirely flat. This subset of box pleating can 
be further subdivided into uniaxial bases—bases in which all 
flaps lie along a common line and all hinges are perpendicular 
to the line—and, shall we say, everything else (which takes 
in a lot). Despite it being only a subset of the broader world 
of box pleating, the set of box-pleated structures that are also 
uniaxial bases is broad and useful. I call this subset uniaxial 
box pleating.

Within the world of uniaxial box pleating, one can design 
bases using a process very much like circle packing, with one 
big difference: while a complex circle-packed design can be 
extremely irregular and practically impossible to construct 
without a computational device, even the most complex and 
ornate uniaxial box-pleated base can be constructed with no 
more tools than a pencil and square-grid paper. Because it is so 
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easily implemented, uniaxial box pleating can be a powerful 
way to design extraordinarily complicated bases.

Uniaxial box pleating, though it has historical roots that 
predate the development of circle packing, can be viewed as 
an extension and generalization of circle packing and works 
in essentially the same way. 

13.1. Limitations of Circle Packing
Circle/river packing creates the most efficient uniaxial base for 
a given tree and sheet of paper, and it is guaranteed to give 
you every flap of the appropriate length that you specify. That 
makes it an extremely powerful tool in the origami designer’s 
arsenal. However, as with any tool, it is essential that one be 
aware of its limitations, of which there are several.

First, there is no guarantee for the existence of a fold-
ing sequence. Circle packing and many other origami design 
techniques create a valid folded form (“valid” meaning it is flat 
foldable without self-intersection), but in general, there may 
not be a sequential series of small steps that leads from the 
square to the finished shape. Traditionally, origami designs 
were discovered as the end result of a series of step-by-step 
explorations; not too surprisingly, then, such models could be 
constructed by a step-by-step sequence. But in the vast world 
of possible origami designs, step-by-step models are actually 
in the minority; most models cannot be broken up into a set of 
independent folds; they are “irreducibly complex .”* This leads 
to a base construction procedure that could be described as, 
“precrease forever, then collapse,” at which point all of the folds 
of the base are brought together at once. Or, as my colleague 
Brian Chan once described one of his designs, “fold this model 
in three easy steps: precrease, collapse, shape.” (Each of the 
“three easy steps” took several hours.) Such “three-step mod-
els” are becoming the norm in complex designed origami.

Second, in circle/river packing, there is little control over 
flap width. Length, yes: length is specified in the algorithm. 
But when it comes to flap width, you get what you get; you 
don’t get to specify flap width as part of the design process. 
Now, it is often possible to employ sink folds (and multiple 
nested sink folds) to make a wide flap narrower. But it is not 
always possible—and you can’t easily have a narrow flap con-
nected to a wide flap (at least, not without sacrificing some 
length). As it turns out, the universal molecule appears to give 

* The term “irreducible complexity” regrettably has another usage, in the 
pseudoscientific doctrine known as “Intelligent Design.” I hope it is clear 
that the term’s usage in origami has nothing to do with such other usage.
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the widest possible flap—and thus, the most width to work with. 
And even if a flap is not wide enough initially, techniques such 
as strip grafting can be used to make a flap wider.

Third, the vertices are at arbitrary locations, and creases 
run at arbitrary angles. This is, perhaps, the most significant 
drawback of “pure” circle packing. There is no easy way to 
transfer an irregular crease pattern onto the paper to be folded. 
There is a strong aesthetic within origami to find all refer-
ence points by folding alone (no measuring and marking), and 
there is a substantial field of origami-mathematics devoted to 
finding both exact and approximate methods for locating refer-
ence points. But even with a tool such as my ReferenceFinder 
(which can give a pure folding sequence for any point or line 
in a small number of folds; see the References), a circle-packed 
design can be overwhelming, with tens or hundreds of points 
to be located. Even if you fall back on measure-and-mark, the 
process of transferring key vertices to the square is mind-
numbingly tedious.

Circle-river packing is not the only game in town, however. 
We have seen that with box pleating, all of the creases fall on 
regular grids and run at just a few angles. We can introduce 
ideas from box pleating into circle packing to realize techniques 
closely related to circle packing that produce much more easily 
foldable bases that are far more geometrically regular, with 
only a slight penalty in efficiency. These regular patterns are 
not only more easily folded; they are more easily designed, 
and in fact usually require nothing more than a pencil and 
grid paper to construct. Before going into them, however, I 
would like to work through a real example design problem, 
which will illustrate some of the problems associated with 
circle packing and will also introduce some concepts essential 
to their resolution.

13.2. A Circle-Packed Beetle
Let me start with a real problem, of the sort that inspired much 
of the development of circle packing: an insect. To be specific, 
I will design a beetle—a rather generic beetle, with just the 
basic appendages: three sets of legs and antennae, spaced out 
along a three-segment body (head, thorax, abdomen). The first 
step in the creation of this beetle is to create the tree graph, 
the stick figure, and to assign lengths to all the flaps. These 
parts are shown in Figure 13.1.

The absolute lengths that one assigns to a flap are entirely 
arbitrary; what matters is their length relative to one another. 
To make this simple, I have chosen all of the flap lengths to 
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be integral multiples of the smallest distance that appears 
in the stick figure—which is assigned a length of 1 unit. The 
rest of the flaps follow: legs are graduated in length, with the 
back legs being longest at 8 units, followed by the center legs 
(6 units) and front legs (4 units).

There are a few extra flaps in this stick figure: one at 
the top of the head and two along the body. These flaps serve 
to create “extra paper” at strategic places in the design. The 
1-unit flap at the top will allow the design to be opened flat 
in plan view (viewed from above, as in the drawing); without 
it there would not be a complete hinge allowing the two sides 
to be spread apart. The other two 1-unit flaps along the body 
create excess paper that will allow a distinct line between the 
head, thorax, and abdomen, to be created.

Next, we create the packing shapes, as shown in Fig-
ure 13.2.

It is fairly common that an origami model exhibits left/
right mirror symmetry. When that is the case, I commonly 
design only half of the model, as shown in Figure 13.2 (the 
left half). Flaps that lie on the line of symmetry of the subject 
must usually have their circles lie on the line of symmetry of 
the base, and this is the case in Figure 13.2.

And now it’s time for the circle/river packing. With this 
many objects, finding an optimum packing by hand is fairly 
hard, even with the use of physical manipulatives (cardboard 
circles and spacers for the rivers). With this packing, it’s 
fairly easy to see that most of the circles and rivers will be 
arrayed around the outside of the square, and one can set 
up an algebraic set of equations for the coordinates of all the 

1
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1

Figure 13.1. 
Left: a generic beetle to design. 
Right: its stick figure.
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circle centers and the size of the enclosing square. This is a 
bit tedious, but it is worth going through as an illustration 
of how to solve for a packing pattern with minimal computa-
tional tools.

Figure 13.3 shows the packing of circles and rivers into 
the left half of a square whose side has length s. The most 
elegant arrangement would have circles packed neatly into the 
corners of the square, but one is rarely so lucky as to achieve 
this condition; more often, the situation is as shown in the 
figure, where no circle lies precisely in a corner.

There are five unknowns in this figure: the square side 
s, and the four distances marked w, x, y, and z. In order 
to solve for all distances, we need five equations. Three of 
them come from adding up distances along the sides of the 
rectangle. Along the top edge, left edge, and bottom edge, we 
have, respectively,

                      , (13–1)

        , (13–2)

            . (13–3)

Figure 13.2. 
Packing shapes on the square 
and stick figure. The rivers 
are shown connected to their 
respective segments on the tree 
graph.

� 

w + 4 +1= s /2

� 

x + 4 +1+1+ 6 + y = s

� 

z + 8 = s /2
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Figure 13.3. 
Circle packing for the generic 
beetle in a square of side s.

And then at the two corners, the Pythagorean theorem 
gives the remaining two equations:

                , (13–4)

            . (13–5)

These equations can be solved exactly (with complex 
results), but all we really need are numerical values for 
the solution with all real positive values, which are readily 
found to be the values shown in Table 13.1.

� 

x 2 + w2 = (4 +1+1+ 4)2

� 

y 2 + z2 = (6 + 2 + 8)2

Distance Value
w 9.63
x 2.70
y 14.56
z 6.63
s 29.26

Table 13.1. 
Distance values for the generic 
beetle circle packing.

This packing is not complete, however. The packing of the 
three circles in the interior is not rigid; there is room for the 
circles (and the rivers around them) to “rattle around” in the 
interior. The way we deal with this situation (which occurs 
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surprisingly often) is to “soak up” the extra space by enlarging 
one or more of the interior circles. With this design, the length-4 
abdomen circle is an obvious candidate for enlargement; we can 
either turn the excess paper underneath, hiding it, or perhaps 
use the extra paper to create additional lines or features of the 
model. A similar analysis to the above, letting the size of the 
abdomen square now become an unknown variable, gives the 
circle/river packing shown in Figure 13.4, where we now show 
the full packing in both halves of the square.

6.2
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Figure 13.4. 
Expanding the abdomen circle 
makes the packing rigid.

Note that the positions of the circles are fixed (“pinned”) 
in place, as are the rivers where they cross the axial paths be-
tween the circle centers. Elsewhere, the positions of the rivers 
are not necessarily fixed; I have drawn them where they are 
only for convenience.

For this packing, the abdomen circle has been increased in 
length by 55%, to a total length of 6.2 units. This means that 
there will be a fair amount of excess length to be hidden. But 
that extra paper was going to have to be hidden somewhere, 
and in a beetle, the abdomen is one of the fattest parts of the 
model; better to hide excess paper in the abdomen (or thorax) 
than in the antennae, for example.
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This design now consists of four axial polygons: a triangle 
at the bottom, a quadrilateral at the top (it looks like a triangle, 
but it’s actually a quadrilateral with one straight vertex), and 
the two heptagons that make up most of the model.

(Heptagons? Surely I mean hexagons, right? No, these are 
heptagons from the standpoint of filling with molecules; each 
has one vertex along the midline of the base that is straight, 
i.e., with a vertex angle of 180°. Each polygon takes in seven 
circles around its outside, ergo, it is a heptagon.)

Once we have a rigid packing, we can fill in the creas-
es using our favorite system of molecules. As we saw in 
Chapter 10, it is possible to break up large polygons into 
triangles and quadrilaterals by adding additional circles that 
create extra flaps in the open spaces, but for this example I 
am going to use the universal molecule (using TreeMaker to 
compute the positions of the vertices and creases). Figure 13.5 
shows the resulting crease pattern using the generic form 
introduced in Chapter 10, with all creases colored according 
to their structural role.

Figure 13.5. 
Crease pattern for the generic 
beetle with structural coloring.

As a reminder, with structural coloring, axial creases are 
green, ridges are red, hinges are blue, and gussets are gray. 
This coloring (which gives the orientation of the creases in 
the base) and the hints on folding direction provided by the 
generic form are enough to collapse such a crease pattern in 
practice using the approximate rules given in Chapter 10, 
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Section 10.8, but TreeMaker (or a bit of manual manipulation 
of the folded base) can also find the full crease assignment, 
which is shown in Figure 13.6.

Figure 13.6. 
Full crease assignment for the 
TreeMaker version of the generic 
beetle.

TreeMaker also provides a picture of the folded form of the 
base, given as an “x-ray view” so that all creases are visible. 
This base is shown in Figure 13.7. The coloring of the creases 
in the folded form matches the structural coloring in the crease 
pattern, so you can see explicitly that all axial creases (green) 
do indeed coincide along the axis; the ridges (red) propagate 
toward and away from the vertical axis; the hinges (blue) are 
all perpendicular to the axis; and the gussets (gray) are parallel 
to the axis, but are removed from it at some distance.

Figure 13.7. 
X-ray view of the base for the 
generic beetle with creases 
colored according to their type.
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It is perhaps not so obvious that this base has all the 
required flaps for the legs and antennae, but they are indeed 
present and distinct. What is obvious is that the flaps (and 
indeed, the entire base) are quite wide, and so considerable 
narrowing will be needed in order to get the legs and body nar-
row enough to resemble the desired subject. But what is even 
more obvious—painfully so—is how haphazard the folds are, 
in both the crease pattern and the base. In the crease pattern, 
creases run every which way, and the corners of ridges and 
gusset creases are determined solely by the mathematics of 
their placement algorithm. In the base, the edges do not line 
up at all (although if the sides are repeatedly sunk to narrow 
the base, they could be forced to line up by the parallel sink 
folds). So, although circle packing provides a mathematical 
solution to the problem of designing a base, it does not neces-
sarily provide an artistic solution, if part of the artistic goal 
is to have an elegant shape with alignments between creases 
as well as a relatively easy job of transferring the crease pat-
tern to the paper.

Even if we use ReferenceFinder to find folding sequences 
for all of the points, the process is fraught with tedium and is 
error-prone, and the paper will likely be covered by extraneous 
creases even before we ever start folding. Such a design may 
be a mathematical success, but it is likely to be an artistic 
failure.

But in the ashes of failure sometimes are found the seeds 
of success, and there are some powerful ideas hidden within 
the rubble of this haphazard crease pattern. I would like to 
take a deeper look at the crease pattern and focus particular 
attention upon the hinge creases, which I have emphasized 
in Figure 13.8.

What are the hinge creases, really? They are the bound-
aries between distinct flaps. Each hinge line maps to a single 
hinge in the base, no matter how convoluted the line is on the 
crease pattern. The regions delineated by the hinges are the 
regions of paper that become the flaps themselves. These re-
gions are polygons (or polygonal rivers, as the case may be).

We performed the circle packing using circles and cur-
vilinear rivers, which represented the minimum amount of 
paper needed for each flap. But now that we’ve found the 
crease pattern, the hinges and the polygons they enclose are 
something different; those polygons are the exact regions used 
for each flap, no more, no less. We encountered these shapes 
in Chapter 10; they are hinge polygons. 

And what are the properties of these hinge polygons? 
Clearly, they come in two types. There are “circle-like” hinge 
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Figure 13.8. 
The generic beetle crease pattern, 
with hinges emphasized.

polygons, which enclose circles, and “river-like” hinge polygons, 
which wind about like rivers, and so we will call the latter 
hinge rivers. The circle-like hinge polygons fully enclose the 
minimum-packing circles, and in some cases are tangent to 
those circles—but tangency is clearly not a requirement on all 
sides. As for the hinge rivers, like their curvilinear brethren, 
they maintain a constant width along their length. But they 
travel in straight segments, changing direction only at discrete 
places, where they are, invariably, crossed by a ridge crease 
that connects the two corners of the bend.

So what if we could just skip the circles and rivers and 
go straight to packing of the hinge polygons and hinge rivers? 
What might we gain? One very important thing: control over 
what polygons we use. With circle/river packing, the polygons 
bounded by hinge creases are generated fairly late in the pro-
cess and we get whatever happens to fall into place. But if we 
could work directly with hinge polygons, we could control their 
shapes; we could, in fact, choose their shapes. Thus, we could 
insure that we end up with nice hinge polygons.

And what, exactly, constitutes a “nice” hinge polygon? 
Well, two properties come to mind. First, it would be nice if 
all of the vertices fell on a regular grid, so that every vertex 
could be found with a relatively simple folding process. Second, 
it would be nice if the creases ran at only a small number of 
angles, further making it easy to construct the crease pattern. 
By a small number of angles, I mean angles that correspond 

© 2012 by Taylor & Francis Group, LLC



573Chapter 13: Uniaxial Box Pleating

to an integer division of the circle: 8ths (45°), 12ths (30°), or 
16ths (22.5°), for example.

As we will see, it is indeed possible to design complex 
origami bases by working directly with the hinge polygons 
and hinge rivers—a technique I call “polygon packing.”  And 
it requires some new ideas and new concepts, which I will 
introduce shortly. But polygon packing is also quite old—in 
fact, one form of it dates back to the earliest days of the mod-
ern era of origami. The nice properties I’ve outlined exist in 
a design method we’ve already encountered: box pleating. As 
we have seen, one can create arbitrary arrangements of flaps 
using the techniques of box pleating; what remains is to find 
the appropriate mapping between the concepts of circle/river 
packing and the concepts of box pleating—and, we hope, to 
uncover any additional concepts in the one that are suggested 
by the other. Box pleating itself is not new; what is new is 
how it can be tied to circle packing, polygon packing, and 
uniaxial bases.

Box pleating actually is an example of polygon packing—
or at least the portion of box pleating that involves uniaxial-
base-like structures, which I will call uniaxial box pleating. 
Uniaxial box pleating brings both of the “nice” properties 
outlined above:

• All creases run at a finite number of angles: in 
box pleating, multiples of 45°.

• All creases can be forced to lie on a regular grid; 
in box pleating, a grid of squares.

All is not perfection, though; there are cons, too, for 
uniaxial box pleating (and for polygon packing in general), 
as we will see:

• The flaps are generally narrower than the equiva-
lent flaps in circle-packed bases. (There are tricks, 
however, for selectively widening certain flaps, one 
of which—level shifting—I’ll talk about shortly.)

• The crease patterns are less efficient than circle-
packed patterns. 

This inefficiency is unsurprising: it can be shown that 
circle/river packing produces the most efficient uniaxial bases; 
everything else must be, by definition, less efficient. What is 
surprising, though, is that the penalty is often very small, 
and uniaxial box-pleated structures can still be surprisingly 
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efficient. Besides, efficiency isn’t everything—sometimes it’s 
not even very much. The benefits gained from polygon packing 
in terms of elegance, symmetry, and foldability often outweigh 
any losses of efficiency and gains in thickness.

I have been talking about “polygon packing” in general, 
not just box pleating, because I want to emphasize the gener-
ality of polygon packing. There are multiple forms of polygon 
packing; box pleating is but one of them. Because it is the most 
accessible, though, it is the form I will concentrate on for the 
rest of this chapter.

13.3. Concepts of Polygon Packing
Polygon packing works similarly to circle packing; we are still 
fundamentally creating a stick-figure-like shape as a uniaxial 
base, but we now pack hinge polygons and hinge rivers, not 
circles and curvilinear rivers, into the square. There are further 
similarities: as with circle packing, we do not allow overlap 
(because any spot of paper can only be in any one flap), and 
the centers of the polygons must lie within the square. But 
there are differences, too. In circle packing, the axial creases 
in adjacent circles and rivers all line up collinearly. This will 
no longer be the case. It will turn out that grids are not just a 
“nice” thing to have—they are essential to keeping the crease 
pattern finite.

There is a new family of creases that appears, which joins 
the families of ridge, axial, and hinge creases: axis-parallel 
creases. These are creases that in the folded form run parallel 
to the axis but are offset by some distance from the axis. The 
gusset crease of circle packing is an example of this, but while 
gussets are occasional visitors to circle-packed bases (via gusset 
molecules and universal molecules), axis-parallel creases are 
essential and widespread elements in polygon-packed bases.

So what are these hinge polygons and hinge rivers?
In circle packing, there are two fundamental shapes used 

for packing, illustrated in Figure 13.9. They are the circle and 
the river.

Figure 13.9. 
Two circles and a river.
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The circle and river represent the minimum amount of 
paper required for each flap: leaf flaps (represented by circles) 
and branch flaps (represented by rivers). For polygon pack-
ing, we use analogs of these two shapes: closed polygons for 
leaf flaps, polygonal rivers for branch flaps. Both shapes are 
outlined by the hinge creases of the crease pattern. But what 
are the conditions that define those shapes?

We have already said that we want the boundaries of 
our polygons to run along “nice” angles. In principle, we can 
use any polygons we want, but it is convenient to group them 
into families according to the angles that their bounding 
creases are constrained to. The first family is the analog of 
box pleating.

In circle packing, circles represent the minimum paper 
needed to create a flap. In polygon packing, the polygons are 
shapes bounded by hinge creases, and they represent the actual 
paper used in each flap. We will make them obey the “niceness” 
condition, that all hinge creases run at a nice set of angles, 
which will be multiples of 90°, in the case of box pleating. That 
sets the rules for a box-pleated hinge polygon: it is a polygon 
that fully encloses the circle whose radius is the length of the 
given flap, and all of its sides run at multiples of 90°.

Why must it fully enclose the corresponding circle? Be-
cause the circle packing sets an absolute lower bound on the 
size of the polygon. Since the circle represents the minimum 
amount of paper required by the flap, every point inside the 
circle must lie inside the hinge polygon. However, some ad-
ditional points outside the circle can also be part of the hinge 
polygon. That means that for a given flap length, there are 
arbitrarily many polygons that can give rise to a flap of that 
length. All that we require is that the polygon fully enclose 
the circle that defines the minimum extent, and that the poly-
gon’s edges run at multiples of 90°. Several such examples are 
shown in Figure 13.10.

Note that while a square satisfies the two conditions of 
fully enclosing the circle and angle-constrained boundary, 
there is no requirement that the polygon be a square, or a 
rectangle, or even convex; L-shaped or T-shaped, or even more 
complicated shaped polygons are possible. There is also no 
particular requirement that the polygon touch its enclosing 
circle on all sides. If the circle can be made larger, though, 
that is an indication that the resulting flap could turn out 
to be longer than the minimum length set by the size of the 
enclosed circle.

For a given flap size, though, there is a minimum poly-
gon, which is the angle-constrained polygon that encloses its 
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corresponding circle. For uniaxial box pleating, this polygon 
is the square that circumscribes the minimum-size circle. The 
actual hinge polygon can be larger. In Figure 13.10 and the 
figures that follow, I will identify the minimum-size square by 
a light blue line, while the actual hinge polygon will be drawn 
in a darker shade.

So, in the transition from circle/river packing to uniaxial 
box pleating and polygon packing, circles, which correspond 
to leaf flaps, are replaced by hinge polygons that enclose their 
corresponding circles. In the same way, the curvilinear rivers 
of circle/river packing are replaced by hinge rivers—straight-
line strips of constant width that only change direction at fixed 
angles. In box pleating, those hinge rivers form right angle 
bends, as shown in Figure 13.11.

Figure 13.10. 
Valid hinge polygons for uniaxial box pleating for a given flap length 
(circle size).

Figure 13.11. 
Examples of several hinge rivers 
of constant width.
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These are the basic geometric elements of polygon pack-
ing, of the uniaxial box pleating persuasion.

And why make a distinction between polygon packing 
and uniaxial box pleating? Why are these not the same thing? 
Because it’s possible to use other angles for the boundary con-
straints. There is an entirely new family of polygon packing 
out there that, unlike box pleating, has not been exploited for 
40 years, which I call “hex pleating,” that uses a different set 
of angular constraints. We will encounter it shortly, but for 
now, let’s continue down the path of uniaxial box pleating as 
our exemplar of polygon packing.

The rules of polygon packing are simple and similar to 
circle packing:

1. All polygons must pack without overlaps.
2. The centers of the minimum-size polygons (or equiva-

lently, the enclosed circle) must lie within the hinge 
polygon.

3. Polygons can be expanded to fill unused space; rivers 
may not.* 

And there is one very important difference from circle packing:

4. All empty space must eventually be absorbed into 
some polygon; there can be no unused space.

This last rule has a straightforward explanation. In circle 
packing, circles represent minimum usage, and empty space 
is allowed. But in polygon packing, the polygons represent 
actual usage, and at the end of the day, all paper must end up 
in some flap. For that reason, we are fortunate that L-shaped 
and T-shaped and other complex shaped polygons are allowed; 
they may very well be necessary to fill all space.

Let’s now set up an example to illustrate the packing 
technique. Figure 13.12 shows a simple example of a stick 
figure with five leaf flaps and one branch flap and its as-
sociated hinge polygons—five squares (corresponding to the 
five leaf flaps) and one hinge river (corresponding to the one 
branch flap).

These polygons must now be packed into a square subject 
to the four polygon packing rules above. As with circle packing, 
we seek a rigid packing, which we can obtain by scaling up 
the individual polygons in a uniform fashion or by enlarging/
shrinking the enclosing square until the elements are rigidly 
* This requirement is not strictly true; we will shortly learn a technique 
that allows rivers to be (apparently) expanded.
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Figure 13.12. 
Hinge polygons for a 5-leaf stick figure, showing the minimum polygons 
(squares that enclose the packing circles) and a hinge river.

Figure 13.13. 
Left: a 5 × 5 square almost works. 
Right: a 6 × 6 square encloses all polygons.
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pinned in a way that prevents further shrinkage. An example 
of this scale-to-fit is shown in Figure 13.13.

The “toy problem” tree we have chosen has flaps of two 
lengths, which are multiples of a common unit. When the 
flaps are an integral number of units in length, then we can 
easily examine packing patterns by placing the corresponding 
squares and rivers on a grid, which is what I have done in 
Figure 13.13. This figure shows that a 5 × 5 square, on the left, 
is just barely too small to fit all five squares plus the river into 
the pattern. A 6 × 6 square is large enough to fit everything—
but it is, in fact, plenty large; there is a lot of extra room left 
over for some of the squares to “rattle around.”

Packing problems of this sort are notoriously difficult 
to solve; in fact, finding the optimum packing of squares of 
variable size within another square is one of the so-called np-
complete problems of computer science, a problem whose gen-
eral solution could provide an efficient solution to every hard 
problem whose answer could be easily checked. The greatest 
minds of computer science think that no such solution exists 
(though no one has proved this yet). Fortunately, in origami, 
there are two mitigating circumstances that apply. First, 
origami packing problems are rarely “worst-case” problems. 
Second, we don’t need to find the best possible solution (nor 
to prove that it is the best possible); we only need a solution 
that is reasonably good.

And so, a packing such as the one on the right in 
Figure 13.13 is perfectly suitable for our needs. There is 
still a lot of empty space that needs to be filled, though. 
Remember, in a polygon packing, every point in the square 
must belong to some hinge polygon or hinge river; every 
point must be allocated to some region of the base.

We performed the initial packing using squares, because 
a square is the minimum-size polygon that (a) encloses the 
circle, and (b) satisfies the angle limitations on its edges. But 
we can use larger polygons that satisfy these two conditions. In 
particular, we can expand a square in any direction in which 
it is unconstrained by adjacent squares or rectilinear rivers, 
turning it into a rectangle, and expanding the rectangle to 
“soak up” the extra paper. So, as Figure 13.14 shows, while we 
can fill most of the extra space by moving some of the hinge 
polygons into the interior of the enclosing square, we can “sop 
up” the rest of the space by expanding the square in the lower 
left corner into a rectangle.

Interestingly, when we expand a rectangle, we’re not 
lengthening the associated flap; the length of the flap is given 
by the perpendicular distance from the circle center to the 
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closest edge. What we are doing, instead, is putting more layers 
of paper into the flap. However, if a square is “loose” enough 
in the packing that it can be expanded in both directions, then 
we truly can lengthen the associated flap.

I call this process inflation, because we are indeed making 
each hinge polygon larger. But, unlike the inflation of circle 
packing in which all circles increase in size at the same rate 
(and result in longer flaps), in this version of inflation, we ex-
pand individual squares at different rates, and often in only a 
single direction.

In many cases, it is possible to soak up all of the excess pa-
per by expanding squares into rectangles and possibly shifting 
the positions of some rectilinear rivers by moving the locations 
of their right-angle bends. You may find, however, that a few 
small holes are left that can’t be plugged simply by expand-
ing rectangles and/or moving rivers. Those small holes can be 
plugged by adding additional squares and/or rectangles, which 
of course then add flaps to the base, just as in circle packing we 
were able to add circles that broke high-order polygons up into 
lower-order polygons by creating additional flaps.

But what is really remarkable is that we can further ex-
pand the rectangles, extruding rectilinear lobes to form more 
complex, irregular, rectilinear polygons. This is somewhat 

Figure 13.14. 
Left: a nearly full packing. Space can be entirely filled by expanding 
one of the packing squares into a rectangle. 
Right: the completed packing. Boundaries of the hinge polygons 
become hinge creases.
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surprising: the leaf polygons can be T-shaped, L-shaped, or 
in fact quite irregular in shape, and yet we will still be able 
to construct creases that make them collapse quite neatly, as 
we will see. So it is never necessary to add additional squares 
or rectangles, although one might choose to do so for other 
reasons (to make use of the new flaps, for example).

Recall that the boundaries of the hinge polygons were 
defined to be the hinge creases, so once we have a fully inflated 
packing, we automatically have all of the hinge creases of 
the base. This highlights a crucial point: we are constructing 
the crease pattern in a different order from circle packing. In 
circle packing, we start with the axials, then build the ridges, 
and finish up with the hinges. In polygon packing, the hinge 
creases are preeminent; they are the first creases to be found. 
We now turn our attention to the other creases.

13.4. Ridge Creases
We have found the hinge creases, but still need to fill in the 
other creases. In circle packing, the creases come in several 
families: axial, gusset, ridge, and hinge (and pseudohinge, 
which occasionally crops up). The same types of creases show 
up in polygon-packed bases—with a few new tweaks and a 
couple of conceptual differences.

The first conceptual difference comes from the basic unit 
in the “divide-and-conquer” algorithm. In circle packing, once 
we had a packing, we connected the centers of touching circles 
with axial creases; these axial creases, in turn, broke up the 
square into active polygons, each of which got filled in with a 
molecular crease pattern (a molecule). One of the conceptual 
hurdles in circle packing was the idea that a single molecule 
contributes to several different parts of the model. So a tri-
angle molecule, for example, contains parts of three different 
flaps (or more, if there are branch flaps involved); conversely, 
a given flap may contain contributions from several different 
molecules. There is no one-to-one correspondence between mol-
ecules and flaps of the model, and indeed, part of the “magic” 
of circle packing is that even though you construct all of the 
molecules independently, they all work together when joined 
up in a single crease pattern.

This situation changes in polygon packing. In circle pack-
ing, we don’t know where the hinge creases go until we’ve 
constructed the molecules, but in uniaxial box pleating, the 
hinge creases are exactly the boundaries of the inflated hinge 
polygons and the hinge rivers. As soon as we’ve solved the 
packing, we have this first set of creases.
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But the second difference is even bigger: instead of creat-
ing molecular crease patterns that encompass parts of multiple 
flaps, we can create the ridge creases for each polygon and 
river independently, and each region is an isolated flap. That 
is, we treat each polygon and river in isolation and construct 
its ridge creases completely independently of all of the other 
hinge polygons. There is, again, some “magic” in how creases 
all work together, but in this case, the “magic” is that even if 
we construct the ridge creases for the independent polygons, 
they will all work together in the overall crease pattern.

So how do we construct these ridge creases? There are, as 
we have seen, two classes of polygons: hinge polygons (which 
can be squares, rectangles, or more irregular shapes), and hinge 
rivers (which are rectilinear). 

The hinge rivers are the easiest to construct ridges for, 
especially with uniaxial box pleating. In fact, they’re ridicu-
lously simple. Everywhere the river makes a bend, you launch 
a 45-degree ridge crease from the corner that travels across 
the river until it hits the opposite corner on the other “bank” 
of the river, as shown in Figure 13.15.

Figure 13.15. 
Top: ridge creases in a hinge 
river. 
Lower left: ridge creases must 
connect corners of opposite 
banks of the river. 
Lower right: if a ridge crease 
misses the opposite corner, then 
the river is not constant width.

If it does not hit an opposite corner, then you haven’t 
constructed the river properly as a curve of constant width. In 
fact, one way of checking that the river has constant width is 
to draw all the ridge creases and make sure that all of them 
run from corner to corner.

The ridge creases for the hinge polygons get a little bit 
more interesting, depending on the shape of the hinge polygon. 
For a given size flap, the smallest that a hinge polygon can be 
is a square, and the ridge creases for a square are easy; they 
are simply the diagonals of the square.

For a rectangle, the ridge crease pattern is also very 
simple. One extends the diagonals inward from the corners of 
the square. The two diagonals adjacent to each short side will 
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meet; and we then join the two meeting points with another 
ridge crease that is parallel to one of the sides. This is the 
classic rectangular sawhorse molecule. Examples of both types 
of pattern are shown in Figure 13.16.

Figure 13.16. 
Left: ridge creases for a square 
hinge polygon. 
Right: ridge creases for a rectan-
gular hinge polygon.

The crease pattern shown in Figure 13.14 contained 
only squares and a rectangle, and so we can fill in its ridge 
creases very simply, as shown in Figure 13.17 (in which, and 
going forward, we have truncated the hinge polygons to the 
bounding square).

Figure 13.17. 
Ridge creases in the circle packing 
from Figure 13.14.

Every corner of a hinge polygon or hinge river gives 
rise to a ridge crease within; since every corner of one hinge 
polygon meets up with at least one other corner, the ridge 
creases connect up at their corners, and you can see in the 
figure that the ridge creases that cross reflex corners of rec-
tilinear rivers form a straight-line continuation of the ridge 
crease that emanates from the corner of the polygon tucked 
into said reflex corner.

The two patterns shown in Figure 13.16 work for all 
squares and rectangles. The interesting question, and indeed, 
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more fundamental mathematical insight, comes from more 
complex rectilinear polygons. What do we use for an L-shaped 
polygon? A T-shaped polygon? An arbitrary polygon? In other 
words, what is a general solution for ridge creases in an arbi-
trary polygon for which the square and rectangular patterns 
are particular special cases?

The answer is a construction known to computational 
geometers as the straight skeleton, which is a construction 
that arises in various computational geometry problems but 
that was linked to the world of paper-folding by Professor Erik 
Demaine at MIT, when he showed that the straight skeleton 
was the key step in the solution of the famous one-straight-cut 
problem. That problem is: given a collection of straight-line 
geometric shapes on a piece of paper, fold the paper in such a 
way that one straight cut through all layers ends up cutting 
along all of the lines at the same time. The fold lines for the 
one-cut problem are provided by the straight skeleton construc-
tion. As it turns out, the universal molecule from origami circle 
packing provides another solution to the one-cut problem (at 
least for convex polygons); thus, there is a pleasant symmetry 
that the universal molecule of origami can solve certain one-cut 
problems, while the straight skeleton of the one-cut problem 
turns out to provide a key set of creases in polygon-packed 
origami design.

So what is this “straight skeleton” pattern? Let’s start with 
how it is created, which can serve as a definition of sorts.

We propagate each edge of the polygon toward the interior 
of the polygon at a constant velocity in the direction perpendicu-
lar to the edge, lengthening or shortening it so that it remains 
in contact with its neighbors, so that the polygon continuously 
shrinks. If two vertices of the polygon collide, they merge into a 
single vertex, and the intervening edge disappears. If a vertex 
of the polygon collides with a nonadjacent edge, the shrinking 
polygon splits in two and the process continues. The straight 
skeleton is the unique set of line segments produced by the paths 
of all of the shrinking polygon vertices. 

In graph theoretic terms, the straight skeleton forms a tree 
graph—that is, it is connected and contains no loops. The tree 
divides the polygon into smaller polygonal regions; each region 
touches exactly one edge of the polygon with the remaining 
boundary of the subregion formed by segments of the straight 
skeleton. The straight skeleton has the property that every 
point in each region is closer to the region’s part of the polygon 
edge than to any other region’s polygon edge.

This is not quite the whole truth, because when we say 
“closer” we have to measure distance in a special way. Basi-
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cally, the “distance” from a point to a polygon edge is the 
perpendicular distance from the point to the extension of the 
edge to an infinite line. (This makes more sense when you see 
it than can be described in words.)

And I will hope that something about this description 
has rung a bell of recognition. The construction process—
insetting of the edges, merging of vertices, the “pinching off” 
of a polygon into subpolygons—should sound very familiar, 
because we have already encountered something very much 
like it in the construction of the universal molecule. In fact, 
the resemblance is more than superficial. Recall that in the 
universal molecule, the presence of active cross paths gave rise 
to gussets. If there are no active cross paths at any stage of the 
universal molecule construction, though, then the universal 
molecule algorithm gives precisely the straight skeleton. So 
the straight skeleton is, in some sense, a special case of the 
universal molecule.

But in another sense, it is a generalization. The univer-
sal molecule was defined solely for convex polygons, but the 
straight skeleton can be defined for nonconvex polygons—
specifically, L-shaped or T-shaped polygons.

Another difference lies in the ease of construction. In 
general, the universal molecule must be constructed numeri-
cally/computationally. The straight skeleton, by contrast, can 
be constructed graphically—and for nice hinge polygons, its 
construction is particularly simple.

Because of the “closeness” property mentioned above, one 
way, in principle, to construct the straight skeleton would be to 
color each edge of the polygon a different color, then measure 
this special perpendicular distance from every point to every 
edge and mark the point with the color of the closest edge in 
a way that makes the boundaries between colors a tree graph. 
Once you’ve colored every point in the polygon, the straight 
skeleton would be all of the boundary lines between the dif-
ferent colored regions.

If we had to construct the straight skeleton that way, it 
would be a long and tedious process. Fortunately, there’s an 
easier way to do it, which relies on the fact that every line seg-
ment in the straight skeleton is the angle bisector between two 
of the edges of the polygon—sometimes two adjacent edges, 
sometimes not. Rather than having to color every point and 
look for the boundaries, we can just construct those angle 
bisector bits. 

We start at the perimeter of the polygon and work our 
way in toward the center. From each corner, angle bisectors 
propagate inward. It should be clear that, at least locally, the 
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angle bisector is indeed the boundary between the regions clos-
est to one or the other edges on either side of the bisector.

Before they get too far, though, some pair of angle bisec-
tors will collide. What happens then gets interesting. Let’s 
label each bisector by the two edges whose angle it bisects. If 
we have three consecutive edges, call them A, B, and C, then 
eventually angle bisector AB collides with angle bisector BC, 
as shown in Figure 13.18. What happens then?

Figure 13.18. 
Schematic of three consecutive 
edges and their angle bisec-
tors.

A

B

C

A B B C

A C

Well, the points on the left side of bisector AB are closer to 
side A; the points on the right side are closer to side B. Similarly, 
the points on the left side of bisector BC are closer to side B, 
while the points on the right are closer to side C; so the points 
inside the triangle are all of the points closer to side B, while 
the points on the outside are closer to side A or C. There must 
be a new boundary line between the points closer to side A and 
C; and this line is, in fact, the bisector between sides A and C. 
So from the intersection of bisectors AB and BC we launch a 
new line, which is a segment of bisector AC—the bisector of 
the angle between two nonadjacent sides. In the process, we’ve 
“cut off” side B; it will play no further role in the construction 
of the straight skeleton.

And then we continue this procedure. We continue extend-
ing bisectors, keeping track of which two edge regions each 
bisector divides. When two adjacent bisectors collide, we drop 
the excluded edge region and continue with the bisector be-
tween the two remaining regions. Eventually, this process must 
terminate, and at that point, we will be left with the straight 
skeleton. A more complicated straight skeleton constructed by 
this process is illustrated in Figure 13.19.

For uniaxial box pleating, this process is relatively simple, 
because all bisectors run at multiples of 45°. For squares, this 
algorithm will give the two crossing diagonals as previously 
noted. For rectangles, this algorithm gives the two diagonal 
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Figure 13.19. 
The straight skeleton for an ir-
regular hinge polygon. Each ridge 
is connected to the two polygon 
edges for which it is the angle 
bisector.

pairs joined by a horizontal or vertical ridge crease (depend-
ing on the orientation of the rectangle), again as previously 
noted. But now we can see that these are just special cases of 
the general straight skeleton, and we can construct a straight 
skeleton for even a very irregular hinge polygon.

The straight skeleton shows up in interesting and di-
verse ways in computer science and in the world at large. 
Peter Engel, origami artist and architect, pointed out to me 
that for a nonconvex structure like Figure 13.19, the straight 
skeleton is the pattern of ridges in a roof of constant pitch on 
an irregular building. 

Although we can construct the ridge creases individually 
for each hinge polygon and rectilinear river in isolation, when 
all ridge creases are drawn, they all connect up to one another 
to form a network of creases. These are the complete set of 
ridge creases, exactly analogous to the ridge creases that one 
encounters in circle packing. So we have the hinge creases 
(the hinge polygon boundaries) and now the ridge creases 
(the straight skeletons of the hinge polygons). Continuing the 
analogy with circle packing, there must be analogs of axial and 
gusset creases as well. And so there are; but the construction 
of axial creases has some surprises in store for us.

13.5. Axis-Parallel Creases and Elevation
Let us now consider the axial creases. As a reminder, these 
are the creases in a circle-packed base that are shown in green 
in Figure 13.20. I have also highlighted the gusset creases (in 
gray), because they are similar to the axials in an important 
way.

In uniaxial bases, axial creases are always perpendicu-
lar to hinge creases, and that is the case whether the base is 
circle-packed or uniaxial box-pleated. In circle-packed bases, 
the axial creases and hinge creases can run at arbitrary 
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angles, but in uniaxial box-pleated bases, the hinge creases are 
constrained to multiples of 90°. This means that axial creases, 
being perpendicular to the hinge creases, are also constrained 
to run at angles that are multiples of 90°. This leads to an 
interesting phenomenon, which was first observed by Erik 
Demaine in his solution to the one-cut problem, a phenomenon 
that we call “bouncing creases.” In circle-packed bases, axial 
creases always propagate outward from circle centers, and so 
in uniaxial box-pleated bases, it is equally tempting (and often 
justified) to launch axial creases from the centers of the packed 
squares or rectangles and propagate them outward toward the 
edges of the hinge polygons.

Before embarking on this “March of the Axials,” however, 
let us pause to address the question: What, exactly, is an “axial 
crease”? It is, fundamentally, a fold that, in the folded form, 
lies on the axis of the uniaxial base. We can characterize every 
fold whose image in the base is parallel to the axis by its per-
pendicular distance from that axis; axial folds have distance 
zero—they lie right on the axis, hence their name—while gusset 
folds, for example, typically are displaced from the axis by some 
distance. We call this offset distance the elevation of the fold.

The term “elevation” comes from the same intuitive physi-
cal picture of a molecule that gives the name to “ridge folds.” 

Figure 13.20. 
The circle-packed beetle base, 
with axials and gusset creases 
highlighted.
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If we set a molecule on a flat surface, it looks a little bit like 
a mountain range and the ridge folds do indeed resemble the 
ridgelines of the mountains. If we define the plane on which 
the molecule sits as “sea level,” or zero elevation, then gus-
set folds (and any other folds that are parallel to the axis) 
have a constant, but nonzero, elevation, as illustrated in 
Figure 13.21.

elevation

axis
(ground)

Figure 13.21. 
Left: a base with the axis oriented to be “sea level.” The elevation 
of an axis-parallel fold is its distance above sea level.

Continuing this analogy, we can assign an elevation to 
every point within the molecule and can describe this mapping 
in several ways. The usual way of describing real mountain 
ranges is with a contour map—drawing lines of constant ele-
vation—and this is also the natural way to describe elevation 
within a molecule, or within any part of a uniaxial base. The 
axial folds, then, are contour lines within the crease pattern, 
lines of constant elevation: specifically, they are the lines of 
zero elevation. In a properly oriented uniaxial base, every 
contour line of zero elevation is an axial fold. 

Axial folds are usually mountain folds (when viewed from 
the white side of the paper), but can be valley folds, so the 
fold direction is not an inherent property of axial folds. What 
makes an “axial fold” really significant is not so much that it 
is a “fold,” but rather, its “axial-ness”—specifically, that its 
elevation is zero.

Gusset folds, also highlighted in Figure 13.20, are also 
folds of constant elevation, which means that any gusset fold 
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runs along a contour line. But, unlike axial folds, where every 
zero-elevation contour line ends up as an axial fold, any given 
gusset fold is typically only a portion of the set of contour lines 
at that elevation, which raises an interesting way of identify-
ing gusset folds in a uniaxial base. In the universal molecule 
construction described in Chapter 11, a gusset fold arose from 
a rather complicated calculation involving “paths” and “reduced 
paths” and other concepts involving distances between pairs of 
points. But there is a much simpler interpretation that arises 
from consideration of the contour lines. If we create a contour 
map of a molecule or a uniaxial base, most contour lines lie 
somewhere “along the slope of the mountain”—the elevation 
on one side of the contour line is higher and the elevation on 
the other side is lower. The gusset folds are those few unique 
segments of contour line where the elevation is higher on both 
sides of the contour line.

This interpretation raises a question, then. Are there situ-
ations where the elevation is lower on both sides of a contour 
line? This situation doesn’t arise in classical circle-packing 
design using the molecules described in Chapters 10 and 11, 
but it is very easy to construct molecules in which this situa-
tion arises. In fact, you can open-sink any molecule or region 
of a uniaxial base along any contour line and in doing so can 
change an unfolded contour line to a folded contour line or (in 
some cases) vice versa.

So, as in the case of axial folds, the fold direction of a gus-
set fold is not really a fundamental characteristic of the fold. 
Rather, it is almost an incidental property of certain contour 
lines: For every contour line, the question of whether it is folded 
or unfolded is answered by the elevation of the paper on either 
side of the contour.

So, a simple way to identify axial and gusset-like folds in 
any uniaxial base would be to draw all of the contour lines (as 
densely spaced as we care to draw); identify (or assign) eleva-
tion to each line; and then determine which of them is folded, 
and their fold direction, based on the elevation of the paper on 
either side of each line.

Up to this point, I have adopted the standard of drawing 
crease patterns on the white side of the paper, for two reasons. 
First, the lighter side offers better contrast with the lines. 
Second, if one draws the crease patterns on the white side of 
the paper and folds along the lines, they will be mostly hidden 
in the folded model (unless you’ve included color changes, of 
course). But for a moment, I would like to reverse this conven-
tion, in order to cement the analogy between crease patterns 
as contour maps and the direction of fold lines. When viewed 
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from the colored side of the paper, a contour line that indicates 
a valley in the folded form is, in fact, a valley fold; a contour 
line that indicates a level mountain ridge is, in fact, a moun-
tain fold. Ridge lines can be either mountain or valley folds, as 
they could indicate either a sloped ridge or a sloped valley, and 
gussets, in our geographical analogy, are level hanging valleys, 
and thus, become valley folds. This correspondence is illustrated 
in Figure 13.22. In this figure, I’ve drawn a molecule with one 
gusset fold. (Can you identify the ridges, gussets, and hinges in 
the crease pattern?) I’ve also added a set of contour lines to the 
crease pattern and, just to emphasize the topographical relief, 
have added arrows that point “uphill” in each polygon of the 
contour map and on the folded form.

Figure 13.22. 
Left: a contour map of a crease pattern for a molecule. 
Right: the folded form. Arrows point “uphill” in both.

Here you can see clearly how to identify mountain and 
valley folds from the contour map for axis-parallel contours 
and ridge lines. If the arrows on either side of a line both point 
toward the line (or even partially toward the line), then it’s 
a mountain fold. If the two arrows both point away from the 
line, it’s a valley fold. And one points toward and the other 
points away, it’s a “slope” line, i.e., there is no fold there (and 
I didn’t really need to draw the contour line there at all).

The choice of the two contour lines in Figure 13.22 was 
somewhat arbitrary; there is, of course, an infinite set of 
contour lines between the lowest-elevation point (“sea level”) 
and the two peaks of the molecule. But most of the contour 
lines will be “slope” lines, lines with higher elevation on one 
side and lower elevation on the other, and therefore, they will 
be unfolded. So all we really need to pay attention to are the 
lines that are potential fold lines, i.e., contour lines where 
the paper might change direction from one side of the line to 
the other.
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With the notion of elevation now firmly in mind, let us 
now turn our attention back to the axial lines of a uniaxial 
box-pleated base.

In a uniaxial base, the axial creases are the lines of zero 
elevation, and in uniaxial box pleating they are the next stage 
in the construction of the crease pattern after the hinge creases 
(boundaries of hinge polygons and rivers) and the ridge creases 
(the straight skeleton of the hinge polygons and rivers). In 
circle-packed bases, the tips of all flaps come from the circle 
centers and have zero elevation by definition and by design. In 
uniaxial box-pleated bases, though, we can relax this require-
ment for certain flaps, namely, those that come from the corner 
or edge of the paper. For middle flaps, however, in most cases, 
the tip of the flap needs to touch the axis of the base.

For the moment let us assume that all of the flaps in the 
base are axial flaps, i.e., their tips touch the axis. For packing 
squares, that means that the center of the square lies on the 
axis, and so that point must lie on some zero-elevation contour 
line. Within each hinge polygon or river, contour lines are per-
pendicular to the boundaries of the polygon. That is enough 
information to precisely locate a set of axial contours: for every 
hinge line on the boundary of the hinge polygon, if there exists 
a line perpendicular to the hinge that passes through the circle 
center, that line must be an axial contour line.

And so, we must launch from the square center point one 
or more zero-elevation contour lines that propagate to the edges 
of the packing square; these will be the beginnings of the axial 
creases. Figure 13.23 shows this launch for the example prob-
lem whose ridge creases were shown in Figure 13.17.

Figure 13.23. 
Launch of the axials from the 
circle centers that then propa-
gate toward the bounding hinge 
creases.
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Each axial line starts at a circle center and propagates 
toward a hinge polygon boundary, perpendicular to the bound-
ary. And what does each do then? Why, it keeps going—in a 
straight line. Unless a contour line encounters some other fold, 
it must keep going, and so the axial contour lines from one 
hinge polygon will extend out of the polygon, across any inter-
vening rivers, and will extend into adjacent hinge polygons. 

In the polygon packing of a circle-packed base, the “magic” 
of circle packing ensures that the axial contours shooting out of 
one flap polygon are perfectly aligned with the axial contours 
shooting out of the adjacent flap polygon (because these axial 
contours are in fact the boundaries of the generating mol-
ecules). However, in what is perhaps the first indication that 
general polygon packing is not quite so clean and simple, in 
uniaxial box pleating (and its generalization, polygon packing), 
the axial contours from a hinge polygon often do NOT line up 
with the axial contours from the neighboring polygon.

So what do we do with such axial contours? We just keep 
going. Any axial contour line will keep propagating until it 
joins a collinear axial contour, it runs off the paper, or it hits 
a ridge crease. This last case happens rather often, and in fact 
this situation ends up generating a lot of the characteristic 
appearance of uniaxial box-pleated bases. 

Figure 13.24. 
Crease pattern with axial lines 
extended across polygon boundar-
ies until they hit a ridge crease.

Note that an axial contour can run along the edges of 
the paper, in which case it is not a fold, obviously. If an axial 
contour hits the edge of the paper perpendicularly, then it 
simply stops. Life gets interesting, though, when an axial 
contour line hits a ridge crease; it changes direction.
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We can see what must happen in the crease pattern by 
considering what must happen in the folded form, as shown 
in Figure 13.25.

Figure 13.25. 
Left: a folded form around a ridge with two contour lines shown. 
Right: the configuration of the two contour lines around the ridge 
crease. The contour line enters and leaves the ridge crease at the 
same angle, i.e., it reflects across the ridge crease.

As the figure shows, when an axial contour line hits a 
ridge crease, it reflects across the crease and keeps going until 
it joins a collinear axial contour, runs off the paper, or hits yet 
another ridge crease, in which case, the process continues fur-
ther. Thus, at each ridge crease, there is a net change in angle 
of propagation, which is twice the angle between the contour 
line and the ridge crease. If a propagating contour hits the 
ridge crease at 45°, it departs at 45° to that same ridge crease, 
with the net result that it takes a 90° turn at the ridge crease 
relative to its original direction.

What if it hits a ridge crease at 90°? It should still reflect 
across the crease, but reflecting across a 90° line results in a 
continuation of the contour line. So a contour line that hits a 
ridge at 90° just keeps going straight.

And, as you can see in Figure 13.24, other configurations 
can occur. A contour line can hit a junction of two ridge creases. 
We can figure out what happens there by considering what 
happens if the contour line slightly misses the junction. In that 
case, it reflects across both ridge creases, which, for uniaxial 
box pleating, has the effect of sending the contour line back 
the way it came. Since we’ve already drawn the contour line 
in “the way it came,” we can simply allow the contour line to 
terminate on such a junction.

All three of these configurations are illustrated in Fig-
ure 13.26.

There is one other situation to consider, which is visible 
in the lower left portion of Figure 13.24. What happens when 
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Figure 13.26. 
What happens when a contour line hits a ridge crease depends on 
the angle. Left: a 45° incidence results in a 90° turn. Middle: hit-
ting a junction of two creases reflects the contour line back the way 
it came, but offset. Right: hitting a junction of two ridge creases 
directly terminates the contour line at the junction.

a contour line crosses a Y junction of ridge creases? Which 
line does it reflect across? In fact, it must reflect across every 
possible line at the junction, which means that although one 
contour line comes into the junction, two contour lines come 
out, as illustrated in Figure 13.27.

Figure 13.27. 
If a contour line hits a Y junction 
of ridge lines, it reflects across all 
of the lines at the junction, and so 
can emit more contour lines than 
the one that entered.

Once we launch a set of axial contour lines, we must follow 
them wherever they go, as they propagate across the crease 
pattern, reflect across ridge lines, split at junctions, and in 
general, keep going. For any given strand of contour line, if 
we follow it along, it will eventually do one of three things:

• run off the edge of the paper (in which case, it can 
be considered to have terminated);

• reflect back on itself (also a termination); or

• keep going forever. (This would be bad.)
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For reasonably well-behaved crease patterns, all of the 
contours eventually run off the paper or terminate, so that we 
end up with a complete map of all of the axial contour lines. 
That map for our test problem is illustrated in Figure 13.28, 
here highlighted.

Figure 13.28. 
Complete pattern of axial con-
tour lines for the sample prob-
lem.

The terminology that we use is to say that the axial contour 
line “bounces” off of the ridge creases (in analogy with a ball 
bouncing off of a wall, although a bouncing ball returns on the 
same side of the wall while a bouncing contour continues on the 
opposite side of the crease). Since the network of ridge creases 
can be rather complex, a single axial contour can bounce around 
for quite a long time, as shown in the more complicated pat-
tern of Figure 13.29 (which is the contour map for a real model, 
Snack Time, which is one praying mantis eating another).

Axial contours can propagate and bounce for quite a long 
time indeed. Every single point along that network must, in 
the folded form, have zero elevation, and so must be located 
somewhere along the axis of the base.

One of the surprising results of Erik Demaine’s work on 
the one-cut problem was that for certain patterns of cut lines, 
some of the folds (which undergo a similar bouncing construc-
tion, from which we have taken the “bouncing” terminology) 
can bounce literally forever—they never stop bouncing, creating 
networks of parallel folds that get ever closer together without 
ever coming to join. We will see in a bit how this can happen, 
but however it does, it would obviously be highly undesirable 
in an origami base! The problem of infinite bouncing is a seri-
ous matter, but it has a simple solution, in the origami world, 
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Figure 13.29. 
Top: a contour map for a complex model with two bouncing axials highlighted. 
Bottom: the folded model, Snack Time (one praying mantis eating another).
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at least: we make every distance in the stick figure an integral 
number, or equivalently, we put the vertices of all of our packing 
squares and rectilinear rivers on a square grid. We will shortly 
see that if we do that, no matter how irregular the hinge poly-
gons become, so long as all of their sides run along gridlines, all 
of the axial contours will also run along grid lines. This insures 
that axial contours can’t bounce forever because there are only a 
finite number of grid lines. But it is not uncommon to find that 
when you’ve propagated all of the axial contours through all of 
their bounces, they completely fill up the crease pattern with 
either a horizontal or vertical axial contour (or both) through 
nearly every grid point—as Figure 13.29 vividly shows.

We have been constructing axial contours, not necessarily 
axial folds; but folds they are indeed. If the minimum elevation 
in the base is zero (which has been an unspoken assumption so 
far, though is not strictly required), then every point not on an 
axial contour has a nonzero elevation. Since the paper on each 
side of an axial contour has a higher elevation than the axial 
contour, the axial contour must actually be folded, and so all 
axial contours are fold lines; they are, in fact, axial folds.

But what can we say about the paper that lies between 
two axial contours? It must lie at some higher elevation, of 
course. But more germane, if we travel from one axial contour 
to a nearby axial contour in the folded form of the base, as we 
depart the contour, we must be heading uphill to higher eleva-
tion. When we get to the other contour, we must be traveling 
downhill. So somewhere between going uphill and going down-
hill, we had to have reached a high point where we changed 
elevation directions.

That hypothetical high point defines a nonzero elevation, 
and at least in the vicinity of our path from one axial contour 
to the next, the paper on both sides of that high point has lower 
elevation than the high point. So there must be a folded line 
that runs through the high point, parallel to the axial contours. 
And it is fairly easy to show that this folded line must be exactly 
halfway between the two axial contours, parallel to both, and 
that it is, in fact, part of another set of contour lines.

So there is at least one new fold that for at least part of its 
length runs along a new contour line. At this point, we should 
construct the new contour. This first elevation contour can be 
initiated at any point that lies halfway between two parallel 
axial contours, but then we propagate it in both directions as 
shown in Figure 13.30. Like the axial contours, this new con-
tour, too, will bounce at ridge creases (reflect across the ridge) 
and will continue propagating and bouncing until it terminates 
by connecting with a preexisting contour line (of the same eleva-
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tion) or it runs off the paper. But eventually, this process, too, 
will terminate. If we create new contour lines between every 
pair of contour lines that have the same elevation, eventually 
the process of contour line creation, propagation, and bounc-
ing will terminate. And we will now have all of the potential 
crease lines of the base: hinges, ridges, axial contours, and 
off-axial contours.

zero elevation (axial)

nonzero elevation

Figure 13.30. 
Construction of a nonzero-ele-
vation contour line between two 
equal-elevation lines.

In many cases, there are only two sets of contour lines 
needed: axial contours, at zero elevation, and a second set at 
some nonzero elevation. The spacing between parallel contour 
lines ends up setting the width of the flaps of the base. It is 
possible to create multiple sets of contour lines at multiple 
elevations, yielding flaps with multiple widths (and so, for 
example, giving a beetle a wide body but narrow legs). The 
possible elevation assignments then grow rapidly. But no 
matter how you assign the elevations, it is possible to unam-
biguously determine which ones are folded, and, for many of 
them, determine the fold direction by the simple rule that if a 
contour line is surrounded by higher elevations, it is a valley 
fold; if it is surrounded by lower elevations, it is a mountain 
fold; and if the elevation is higher on one side and lower on 
the other, then it is unfolded, as shown in Figure 13.31.

(As with the generic form crease assignment seen earlier, 
this rule will assign all axials to be mountain, which is only 
an approximation; for some middle flaps, axial creases will 
turn out to be valley.)

And that completes the basic algorithm for uniaxial box 
pleating. You now have all of the folds: the hinges between the 
flaps; the ridges (diagonals, mostly); and axial and off-axial 
contour folds (the latter of which are now the analogs of gus-
set creases in circle-packed bases). The fold directions are not 
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axial
axial+1
axial+2

unassigned

assigned

elevation 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 12 2 2 2 2

Figure 13.31. 
Crease assignment. Given a set of elevation lines (top), the fold angle 
(mountain/valley/crease) of axis-parallel folds can be determined by 
the elevation of the creases on either side of the given fold.

yet specified (although if there is only one family of off-axial 
contour folds, they are uniformly valley folds; the ridge folds 
alternate fold direction). In general, however, this informa-
tion is enough to perform the collapse of the crease pattern; 
the as-yet-unlabeled crease directions become obvious as you 
perform the collapse.

If we draw the crease pattern on a square grid with hinge 
polygon vertices always landing on grid points, then we can 
talk about flap lengths in terms of “units,” where one unit is 
one grid square. The shortest possible flap is therefore one unit 
long. What about flap width? In the densest crease patterns, 
we have axial fold lines on parallel grid lines, and so we will 
have off-axial fold lines on the half-integral grid lines. The 
spacing between axial and off-axial folds sets the width of the 
associated flap; so the minimum width of any flap is one-half 
unit. For insect legs, narrow flaps are desirable, but for crea-
tures with reasonably large bodies, it’s desirable to have the 
body flaps somewhat wider. It is often possible to adjust the 
positions of rivers and the sizes of the “stretched” polygons to 
shift the axial contours so that the axial contours get no closer 
to each other than two or more units. This gives a base that is 
proportionately wider relative to the lengths of its flaps.
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One of the great advantages of designing with uniaxial 
box pleating is that the tools needed are minimal; an entire 
base can be designed with nothing more than a pencil and 
graph paper (or unlined paper, if you are a good artist). For 
myself, I usually do my designs using a computer drawing 
program—not because the computer is inherently needed, but 
because it’s faster, in the same way that a computer word pro-
cessor is faster than longhand writing. In recent years, most 
of my own complex designs have been based on box pleating, 
because it’s fast, it gets the job done of creating flaps, and I 
can put my creative energies into the artistic aspects of the 
folded work, rather than the mundane work of getting the 
right number of flaps.

In this section, I’ve used simple structures and a simple, 
contrived problem to illustrate all the concepts of uniaxial box 
pleating. But now it’s time to put things to the test, and try 
out a real example.

13.6. A Box-Pleated Beetle
So far, everything I’ve described has been purely theoretical. 
I would now like to show polygon packing and uniaxial box 
pleating in action. I will take as my example the same generic 
beetle that I used to illustrate circle packing at the beginning 
of this chapter.

1
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Figure 13.32. 
The stick figure and packing 
circles for a box-pleated base.
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We begin with the same tree graph, circles, and rivers for the 
left half of the crease pattern; but in anticipation of box pleating, 
I have placed them on a grid, as shown in Figure 13.32.

The packing starts by turning the rivers into rectilinear 
hinge rivers and wrapping the circles in the minimum-size 
squares whose hinges run along grid lines. These are then 
packed into the paper square, as shown in Figure 13.33. The 
three squares that lie on the center line have some extra space 
alongside, and so we will expand these three squares into 
rectangles.
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Figure 13.33. 
Packing of the hinge polygons 
(squares and rectilinear rivers) 
into the paper square (left side 
only).

We can soak up some of the extra space by expanding flaps 
sideways. However, along the center line, we want to have an 
axial crease running all the way down the model in order to be 
able to unfold it into plan view. To do this, I add two more circles 
(one near the head, one below the abdomen), which insures that 
there is an unbroken stretch of packed circles and rivers from 
the top to the bottom of the square along its symmetry line, as 
shown in Figure 13.34.

Next, we add the ridges. In each polygon, the ridge is the 
straight skeleton. This is a relatively simple structure, so all 
of the closed hinge polygons are squares or rectangles; no L-
shaped or T-shaped figures, which keeps the pattern of ridges 
relatively simple, as shown in Figure 13.35.
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Figure 13.34. 
Packing with squares expanded 
into rectangles and extra squares 
added to “soak up” extra space.

Figure 13.35. 
Ridges added to all polygons and 
rivers.
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Now, it’s time for the axials. If we want to unfold the 
base to lie flat in plan view, then we need an axial contour 
running down the symmetry line of the model (the center of 
the square in our design). Since every point along that line 
is axial, that means that at each intersection of ridges along 
the center line, an axial contour must propagate outward 
(leftward) from the intersection. We propagate these contours 
outward until they hit a ridge; they bounce at the ridges and 
keep going until they close on themselves or run off of the 
paper, as in Figure 13.36.
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1

Figure 13.36. 
The first round of axial creases.

The axial contours drawn in Figure 13.36 are the ones that 
are forced by the crease pattern (specifically, they are forced by 
the requirement of having an axial crease down the symmetry 
line of the model). But they also establish a natural scale for 
the remaining contours of elevation. Observe that the closest 
two parallel axial contours come to one another is two grid 
squares’ worth. There must be a nonzero contour of constant 
elevation between them, that is, one grid square, which means 
that the natural width of the flaps will be one grid square’s 
worth. I will call this contour the “axial+1” contour, since its 
elevation is one grid square above the axial contour. And so, 
we add those forced axial+1 contours, and then continue add-
ing contours at alternating elevations so that all contours are 
either axial or axial+1. This means that the leg flaps will all be 
one unit wide and the body (after opening out into plan view) 
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will be two units wide. The finished set of contours is shown 
in Figure 13.37.

Crease assignment for the axis-parallel contours is fairly 
easy. As viewed from the white side, the axials are (mostly) 
mountain folds; the exceptions are the unfolded axials down 
the middle of the pattern. The axial+1s are all valley folds. 
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Figure 13.37. 
The crease pattern with both axial 
and axial+1 contours in place.

Figure 13.38. 
The structural coloring of the 
fully assigned crease pattern.
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Ridges alternate between mountain and valley along their 
length. Hinges get assigned according to the positions of the 
corresponding flaps. The fully assigned crease pattern with 
structural coloring is shown in Figure 13.38.

And this pattern indeed can be folded into a base that has 
the right flaps in the right place to make this generic beetle, 
as shown in Figure 13.39. (The leg flaps have been folded out 
to the sides in this drawing to make it easier to visualize the 
base.)

Figure 13.39. 
The generic beetle concept we 
started with and the box-pleated 
base we ended up with.

Having completed this design, there are now only “three 
easy steps” left for the reader: precrease, collapse, and shape. 
I encourage you to print out the pattern in Figure 13.38 and 
collapse it so that you can verify that that the coloring does 
indeed describe the position of the various creases in the folded 
base.

Box-pleated designs can be much neater than their circle-
packed equivalents. Figure 13.40 shows a stick figure and a 
narrowed circle-packed base for a Cerambycid Beetle, a beetle 
with long antennae. Although this structure, based on the uni-
versal molecule, is certainly foldable, finding reference points 
for the odd-angle folds would be difficult indeed.

Its box-pleated equivalent, on the other hand, is simple 
and elegant, as shown in Figure 13.41, and is relatively easily 
foldable to boot.

Figure 13.41 displays the normal mountain/valley color 
scheme. Can you now identify the ridge, hinge, axial, and 
axial+1 creases? Can you then identify the hinge polygons, and 
so which region of the paper goes into each flap?

While complex uniaxial bases are particularly well suited 
to insects and arthropods (and I have a personal soft spot for 
them as subject matter), their techniques may be used for many 
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Figure 13.40. 
Stick figure and fully assigned crease pattern with structural col-
oring for a long-antennaed beetle using circle/river packing and 
universal molecules.

Figure 13.41. 
Crease pattern, base, and folded model for the Cerambycid Beetle.
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other types of subject that incorporate branching patterns into 
their form. Recall the Roosevelt Elk from Chapter 11, which had 
elaborately branched antlers but a host of complicated reference 
points to find. A moose would seem to offer a similar challenge. 
Figure 13.42 shows a stick figure and two circle-packed crease 
patterns, computed from tree theory. The pattern on the left 
is the simplest figure that fits into the square; the pattern on 
the right has received some tweaking to try to simplify the 
folding pattern. Neither of them, however, appears particularly 
desirable to fold.

Figure 13.42. 
Top: stick figure for a moose. 
Bottom left: a minimally optimized crease pattern. 
Bottom right: a modified crease pattern adjusted to simplify the 
pattern.

But with uniaxial box pleating, we can create a simple 
crease pattern that goes all the way to the base and folded 
model in a relatively straightforward way, illustrated in Fig-
ure 13.43.
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You will find folding instructions for the Cerambycid 
Beetle in the references for this chapter; step-by-step fold-
ing instructions for the Bull Moose are at the end of the 
chapter.

Uniaxial box pleating is conceptually a bit more compli-
cated than circle/river packing, due to the presence of multiple 
elevations and the complications of bouncing axial creases. 
It is extremely powerful, though, and best of all, requires no 
sophisticated computation; one can design, construct, and fold 
arbitrarily complicated figures using nothing more than some 
colored pencils and graph paper.

This chapter has outlined the basic concepts of uni-
axial box pleating—which is itself just a single variety of the 
broader family of polygon packing. While I’ve covered a lot of 
ground up to this point, there are still many variations and 
modifications of the basic theory that one can use to create a 
better match between the base and the requirements of the 
subject, and perhaps more interesting, one can use techniques 
that are not “pure” uniaxial box pleating but are a hybrid of 
other possibilities. Some of the most interesting—level shift-
ing, Pythagorean stretches, and hex pleating—and further 
generalizations of polygon packing, will be addressed in the 
next chapter.

Figure 13.43. 
Crease pattern, base, and folded model of the Bull Moose. 
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Folding Instructions

Bull Moose
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1. Begin with a square, colored side up. Fold in
half vertically and unfold.

2. Fold the edges to the center line; crease and
unfold.

Bull Moose
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3. Fold four times, dividing the paper into eighths. 4. Fold eight times, dividing the paper into
sixteenths. Turn the paper over.

5. Fold 16 times, dividing the paper into 32nds.
Make each fold by bringing the mountain fold
just below it to the one just above it (or vice-
versa); this will insure later that the pleats all line
up.

6. Make a bunch of diagonal creases.
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7. Make two vertical folds through existing crease
intersections. Turn the paper over from top to
bottom.

10. Make four more diagonal folds.9. Make four diagonal folds.

8. Make another vertical fold through existing
crease intersections. Turn the paper back over.
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12. Make another vertical crease.

13. Make 15 vertical creases, connecting the crease
intersections shown. Turn the paper back over
from top to bottom.

14. Make 16 more vertical creases, connecting
the crease intersections shown.

11. Make three more vertical creases, again through
existing crease intersections. Turn the paper over
from top to bottom.
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15. Add 12 diagonal creases. 16. Fold and unfold in 32 places along the right
edge.

17. Precreasing is finished. Pleat the top and
bottom edges on existing creases.

18. Form a Waterbomb Base-like shape using the
existing creases. You don’t need to press it fully
flat yet.
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19. Petal-fold the edge in front
and behind on the existing creases.

20. Reverse-fold two edges
on existing creases.

21. Open-sink in and out.
Repeat behind.

22. Open-sink in and out again.
Repeat behind.

23. Open-sink the edge in and
out (and in and out, and in and
out!) on the existing creases.
Repeat behind.

24. Fan the edges of the pleated
layers out to the sides. The next
step will be a side view.

25. Reverse-fold four corners; the
diagonal creases already exist.

26. Mountain-fold part of the edge
underneath using the existing creases.
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27. Reverse-fold the edge inward,
again using the existing creases.

28. Pleat the edge underneath as
you did in steps 26–27, but making
the dented region deeper (again,
follow the existing creases).

29. Close up the model.

30. Fold one flap down in
front and one down behind.

31. Fold half the layers on the right
toward the left in front, and half
of the layers on the left behind,
spreading the layers symmetrically.

32. Bring the near flaps to the right
and the far flaps to the left, stretching
out the model. The next view will be
a side view.
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33. Stretch the sides apart so that
three squares’ worth of the top point
flattens out.

34. Dent the top in two places, adding
the creases shown. Stretch the top
left toward the left a bit.

35. Stretch a bit more paper to
the left and close up the model.
The next view is from the left
side.

36. Turn the model over. 37. Fold a group of flaps
upward as far as possible.

38. Pull out a single layer of paper,
folding the pair of flaps up at right
angles to the rest of the model.

39. Fold a rabbit ear from
the vertical layers and fold
the upright flaps down.

40. Steps 41–56 will focus
on the top of the model.
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41. Sink the near corner on
each side.

42. Pull out some loose
paper from the left near
flap.

43. Reverse-fold the edge.

44. Reverse-fold the edge
back to the left.

45. Reverse-fold the edge
back to the right so that the
edges are aligned with the
other layers.

46. Repeat steps 42–45 on
the next flap on the left and
on both flaps on the right.

42–45 42–45

42–45

47. Sink the next pair of
corners.

48. Open-sink the far edge
on each side. Over the next
8 steps, you will start with
the far edges and work your
way to the near ones.

49. Reverse-fold the top
hidden corner of the next
nearest layer on each side.
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50. Reverse-fold the long
edge on each side (which
terminates with a closed
sink at the reverse folds you
just made).

51. Mountain-fold the next
edge, reverse-folding it at
the top to align with the
previous two reverse folds.

52. Valley-fold the next pair
of edges, again reverse-
folding at their top.

53. Mountain-fold the next
pair of edges, again reverse-
folding at their top.

54. Repeat steps 52–53 on
the next pair of layers.

52–53 52–53

55. Mountain-fold the near
edges underneath.

56. Mountain-fold the near
edges underneath; reverse-
fold the (final) pair of
corners at the top.

57. Pull out some excess
paper from the long near
flaps and crimp the excess
paper upward at the top.
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58. Open-sink the long
edges up to the corners.

59. Mountain-fold the
corners inside their
respective flaps.

60. Pull out some loose
paper in the same way
you did in step 57.

61. Carefully fold the model in half,
making sure you don’t split the
paper at the two marked points.
Rotate the paper 1/4 turn clockwise.

!

1/4

62. Fold all four legs down,
removing the crimp at their base.

63. Reverse-fold the tail downward.
Lift up the antlers so that they stand
up and out from the head.
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64. Reverse-fold the tail back
upward. Pull out some loose paper
at the shoulders.

65. Crimp the body with two parallel
creases. Be careful that it doesn’t
split along the upper edge.

!

66. Mountain-fold the corners at the
shoulder. Reverse-fold the corner
of the crimp. Repeat behind.

67. Mountain-fold the belly inside.

68. Squash-fold the tail. Shape
the chest with mountain folds.

69. Double-rabbit-ear-
fold the legs.

70. Reverse-fold the four legs at slightly
different angles for a walking pose.

71. Crimp the hooves. Reverse-fold
the flap inside the nose downward.

© 2012 by Taylor & Francis Group, LLC



624 Origami Design Secrets, Second Edition

72. Mountain-fold the edge of the
shoulder. Reverse-fold the corner
under the chin.

73. Detail of head. Crimp the
nose downward, leaving its
upper edge rounded.

74. Round the nose with
reverse and mountain folds.
Crimp an edge to form an eye.
Crumple the dangling flaps
slightly.

75. Narrow the stalk of the
antlers; fold three points toward
the right and the remaining
pleats to the left. The next view
is from the top.

76. Top view of head and
antlers. Pleat the middle of
the antler and fan the pleats
at the top. Repeat on the
right.

77. Reverse-fold the
corners along the top edge
of each antler. Pinch the
group of three points at the
bottom into a rabbit ear.

78. Spread the three
points. Shape and round
the antlers.

79. Like this. Open out
the ears.

80. Finished Bull Moose.
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14
t this point, you have seen that uniaxial box 
pleating has all the versatility of circle/river 
packing but has the additional benefit of pro-
ducing symmetric, easily precreaseable (if not 
necessarily easily collapsible) folding patterns. 

These patterns can be highly complex, and while the tech-
nique may be used for all types of subject, it is particularly 
suited to insects and arthropods (many of which you will meet 
in this chapter), such as the Flying Walking Stick shown in 
Figure 14.1.

This design contains all the elements of uniaxial box pleat-
ing: rectilinear hinge polygons, ridge creases along the straight 
skeleton, and two elevation levels for axis-parallel folds: axial 
and axial+1. Although you might enjoy the challenge of figuring 
out a crease assignment from the contour map, a fully assigned 
crease pattern is given at the end of the chapter. 

If, however, you restrict your designs only to the basic ele-
ments of box pleating described in the previous chapter, you 
will quickly bump up against one of the barriers of uniaxial 
box pleating, for this design approach carries with it several 
limitations. Fortunately, there are more specialized tech-
niques—modifications and variations of the basic idea—that 
let you creatively work around the limitations of uniaxial box 
pleating. Better yet, uniaxial box pleating is just a special case 
of a much broader, much more powerful concept, whose name 
I have already introduced: polygon packing. Polygon packing 
allows one to create complex designs while striking an aesthetic 
balance between efficiency, symmetry, precreasability, collaps-
ibility, and, of course, the desired visual representation of the 
subject. In this chapter, we will delve deeply into the subtleties 

Polygon Packing

A
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Figure 14.1. 
Contour map and folded model of the Flying Walking Stick.

of uniaxial box pleating and will, eventually, arrive at the full-
up technique of generalized polygon packing.

14.1. Level Shifting
One drawback of box pleating relative to circle packing is the 
issue of width—or rather, lack of width. It is not uncommon 
for the axial creases to be separated by two or even only one 
grid square, which means that the resulting flaps will be only 
one or one-half grid square wide. This may not be a problem 
for insect legs, but it can definitely be a problem for the 
(typically wider) body. It would be nice to have a technique 
for selectively widening parts of the base in an elegant and 
straightforward way. 

A more serious issue can also arise: what happens if, in the 
process of bouncing, two contour lines at different elevations 
turn out to meet head-on, as shown in Figure 14.2?

Now, one’s first reaction might be that this can’t happen. 
But we might have made decisions in several places about el-
evation (for example, forcing axial contours along the symmetry 
line of the model) that would result in this situation somewhere 
else in the model.

It can’t really happen, of course; we can’t possibly allow 
two contour lines of different elevations to run into one another. 
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Figuratively, we have a head-on train wreck. What we need 
is a way to get the two trains onto parallel tracks.

And we will find a solution lurking within a very simple 
structure, shown in Figure 14.3. This is simple to fold: take 
a Waterbomb Base; sink the point; crease the result through 
all layers; then spread-sink two corners as you fold the near 
edge downward. Then closed-sink the flap into the interior of 
the model.

?

axial

axial+1

Figure 14.2. 
Two colliding contours at differ-
ent levels.

Figure 14.3. 
A level-shifting test structure.
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What I would like to do is to compare the crease patterns 
of the first and last steps of this model, emphasizing the con-
tour lines (where I have taken the bottom edge of the folded 
shape as the axis). First, we have the original shape, as shown 
on the left in Figure 14.4. It consists of a series of concentric 
contour lines, with the lowest elevation, axial (green) around 
the outside and in the center, axial+1 inside of that (brown), 
and the highest elevation, axial+2 inside of that (violet). Then, 
on the right, we have a contour map of the result.

Figure 14.4. 
Top left: contour map of the test structure before sinking. 
Bottom left: the folded form. 
Top right: the contour map after sinking. 
Bottom right: the folded form.

We have, of course, added some diagonal folds in red 
(which correspond to ridge creases). But the important thing 
to observe is that the second line down in the middle, which 
used to be axial+2, is now just plain axial. We have shifted the 
elevation of this crease.

The folds that created the shifting were the creases along 
the diagonal ridge crease on each side of the former ridge. 
Let’s focus on just one side of this structure. This pattern of 
creases, created by the spread-sink, when isolated, becomes a 
tool for shifting the elevation of an axis-parallel fold, as shown 
in Figure 14.5.
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Once one knows the contours, then one can work out a 
layer ordering and assign creases. Figure 14.6 shows one pos-
sible crease assignment of the pattern with mountains and 
valleys but retaining the structural coloring.
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0

Figure 14.5. 
Contour map of a level-shifting gadget. Left: prior to level shifting. 
Right: after level shifting. The numbers along each contour line 
indicate the elevation of the contour.
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Figure 14.6. 
Crease-assigned contour map. Left: prior to level shifting. 
Right: after level shifting.

I call an isolated pattern of creases like this a gadget. 
This particular gadget is a design pattern for level shifting. 
Whenever a contour crosses a ridge crease, as in Figures 14.4 
and 14.5, we can use this gadget to shift the elevation on one 
side by an amount equal to twice the distance to the two sur-
rounding contour lines. So in the example above, the axial+2 
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contour line is shifted by the gadget between the two axial+1 
contours down to axial+0 (that is, plain old axial) elevation. 
And clearly, it is possible to use the same gadget to go the other 
direction as well.

In box pleating, ridges can propagate at two angles with 
respect to incident axial contours: 45° and 90°. There are level-
shifting gadgets for both situations, and the two possibilities 
are shown in Figure 14.7.

Figure 14.7. 
The two level-shifting gadgets 
for box pleating.

As an illustration of this technique, Figure 14.8 shows a 
contour map for a Salt Creek Tiger Beetle that is somewhat 
similar to the generic beetle base of the previous chapter, but 

0 1 212

Figure 14.8. 
Contour map, base, and folded form for the Salt Creek Tiger Beetle. 
Note that the abdomen is widened by use of level shifters inserted 
into the body.

© 2012 by Taylor & Francis Group, LLC



631Chapter 14: Polygon Packing 

has extra width in the abdomen. This extra width is obtained 
by inserting two of the 90°-incidence level shifters into the ab-
domen, which connects an axial contour to an axial+2 contour. 
(Can you find this connection in the contour map?)

A fully assigned crease pattern is given at the end of the 
chapter.

The symmetric gadgets of Figure 14.7 are not the only 
possible level-shifting gadgets; there are asymmetric versions 
as well. You can discover these by, for example, spread-sinking 
the corner in Figure 14.3 at some angle other than the sym-
metric angle. You can also construct them graphically. The 
angle at the tip of the triangle is fixed: 45°, in the 90° angle 
level shifter on the left in Figure 14.7. (In general, the angle 
at the tip is equal to the angle between the ridge crease and 
an incident axial). You can imagine keeping that angle fixed 
and swinging the two lines back and forth from side to side 
to orient the level shifter more closely toward one axial fold 
or the other, as illustrated in Figure 14.9.

45° Figure 14.9. 
Left: one can swivel the level 
shifter back and forth about its 
tip so long as the angle between 
the two lines is fixed. 
Right: an asymmetric level shift-
er whose vertices all lie on grid 
lines.

One particularly interesting and useful level shifter is 
shown on the right in Figure 14.9, which is a pattern I learned 
from Japanese artist Satoshi Kamiya. A small perturbation in 
angle puts all four vertices of the level shifter on grid points, 
making it easy to construct in a grid-based box-pleated de-
sign.

Other versions of level shifter apply when a contour hits 
a junction of several ridge creases. Special cases can often be 
found simply by drawing just the region of paper around the 
junction with contour lines and the original ridge creases and 
then spread-sinking to make the contour lines wind up in the 
right place. And I should point out that just as the spread-
sink has been around a very long time, the use of structures 
like this can be found in many crease patterns for advanced 
complex designs. Like box pleating, level shifting itself is not 
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new, but once we recognize the function of a structure, we can 
then use, adapt, modify, and improve it, and make it one more 
tool in our designer’s arsenal.

14.2. Layer Management
Level shifting allows one to selectively widen (or narrow) flaps. 
That allows one to, for example, make a body wider than the 
legs, or distribute layers across the width of a flap, reducing (or 
at least, balancing) the overall thickness of the flap. This is a 
useful capability. When one is designing a complex base, even 
with thin paper, the paper thickness plays a non-negligible 
role in the finished figure. When used well, it can add needed 
three-dimensionality to the fold. It can also get in the way, 
though, driving upward the thickness of flaps that need to be 
thin (legs, antennae), or simply unbalancing thickness. If one 
folds an insect with six legs so that four of the legs come from 
the corners and the other two come from the edges, then those 
edge flaps will have roughly twice as many layers as the corner 
flaps. This can produce a notable imbalance in the apparent 
thickness of the legs.

Paradoxically, the solution to such an imbalance, with 
some legs too thick, is to add layers to the legs that are too 
thin. If the thicknesses are balanced, it is much less noticeable. 
This selective addition of layers to flaps can be accomplished 
by enlarging the corresponding hinge polygons.

Fine-grained layer control is an ability that polygon pack-
ing offers that is not readily available in circle/river packing. 
In the latter, the individual flap polygons are defined late in 
the design process, and you “get what you get.” In polygon 
packing, we can tinker with the layers in individual polygons, 
giving much more control over the thickness of the correspond-
ing flaps.

The way we add layers to flaps in uniaxial box pleating 
is simple: we make the flap polygon larger than its minimum 
size. Since all of the paper within the polygon is going to go 
into the flap, making the polygon larger while maintaining the 
length and width of the flap insures that the average amount 
of paper in the flap increases.

All leaf flaps (those with one free end) taper in their 
number of layers, with the fewest layers near the tip and the 
most near the base, where it joins the rest of the model. This 
relationship is evident in circle-packed bases, where flaps tend 
to be triangular; it is less evident, but no less true, in uniaxial 
box-pleated bases. The number of layers at the base tends to 
increase linearly with distance from the tip, and is, for evenly 
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layered 1-unit-wide flaps, given by the perimeter of the flap 
polygon, expressed in those same units.

So, for example, one can “fatten up” a corner flap by add-
ing a few more grid squares to the bite it takes out of the corner 
of the crease pattern, as illustrated in Figure 14.10.

Figure 14.10. 
Left: a minimum-size corner flap. 
Right: the flap fattened by adding two more units of width.

A similar technique can be used to fatten up an edge or 
middle flap (although the circumstances where you would 
want to fatten a middle flap are rare indeed).

A side benefit to flap thickening comes when folding 
insects. The addition of one or two units to the width of 
the flap has the effect of squaring off the end, as shown in 
Figure 14.10. This squared-off end can then be easily point-
split—creating, for example, the pair of claws at the end of 
many insects’ feet.

14.3. Whole vs. Half-Integer Widths
In theory, the exact grid that one uses to make a uniaxial box-
pleated base is not that important: if there are three sets of 
legs, they’ll have the same relative proportions whether they 
are 1, 2, and 3 units long; 2, 4, and 6; or 3, 6, and 9. What will 
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vary is their width relative to their length. For many designs, 
even this is not too important: a fat flap can be narrowed, par-
ticularly easily if it has been turned at a right angle relative 
to the axis during the shaping folds.

So the primary motivation for picking the basic unit is 
to establish a sort of minimum feature size. This becomes 
particularly important when the desired subject has a fairly 
wide region—the main body, for example. One can use level 
shifters fairly easily to double the width of a portion of a model, 
but higher multiples are trickier: one must use multiple level 
shifters, or more complex level shifters, and the shifting itself 
consumes paper that might have been desired for other pur-
poses.

Once we have established a grid, we very often would like 
to keep all of the creases on the grid—ideally, without using 
level shifters at all. That means that in every region of the 
paper, we would like our contours to alternate axial, axial+1, 
axial, axial+1, and so forth.

This goal may not be possible, though. In fact, it is possible 
to choose hinge polygons that make this choice impossible. A 
situation that arises not infrequently is to have a middle flap 
positioned along the center line of the base, which is usually 
an axial fold (so that the base can be opened out in plan view). 
When this situation occurs, the contour down the center is axial; 
the contour one unit away is axial+1; and then they alternate 
from there, as shown in Figure 14.11, as one moves around the 
outside of the polygon.

Figure 14.11. 
A hinge polygon centered on an 
axial contour.

Now, if we start with an axial contour in the middle and, 
as shown on the left in Figure 14.11, start working our way 
around the polygon, we find that when we get to the middle 
of the left side, there are two axial+1 contours one unit apart. 
That means there must be a folded contour halfway between 
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them—an “axial+1/2” contour. And so that part of the fold, 
and anything that that folded contour connects to, will be half 
a unit wide, a potentially undesirable outcome.

Note that while we chose the elevation assignments of the 
contour lines along the top and bottom edges of the polygon, the 
contour lines along the sides were forced by their bouncing off 
of the ridge creases inside the polygon. So one might consider 
that, perhaps with a different shaped polygon—one with a dif-
ferent pattern of ridge creases inside it—the bouncing might 
work out the way we want. And things might well work for a 
different hinge polygon, but wouldn’t it be nice to know how to 
pick one? Or, at least, how not to pick the wrong one?

Figure 14.11 is a good example of a wrong polygon. With-
out even working out the ridge creases and bouncing creases 
inside the polygon, we could have determined we were in 
trouble from a simple parity argument. There must be some 
contour line at every grid point on the boundary of the hinge 
polygon that is perpendicular to the polygon boundary (be-
cause the contours are axis-parallel, the polygon boundaries 
are hinges, and axis-parallel creases are perpendicular to 
hinges). So we could just move around the outside, alternating 
in parity. We are forced to have two consecutive contours of the 
same parity somewhere along the way because the semiper-
imeter of the polygon is an odd number of units in length.

And so, the first rule of packing is clear: if we want to 
avoid folded contours that create half-unit-width flaps, we 
should make sure that the distance between any two points 
on the polygon boundary that are required to be axial is an 
even number of units, measuring around the boundary of the 
polygon.

This even/odd condition on the boundary is necessary; 
alas, it is not sufficient. It is possible to satisfy the even-
semiperimeter condition for a specific polygon but to still 
have bouncing in the interior cause problems with the desired 
alternation of contours. Figure 14.12 shows a slightly more 
complex polygon whose straight skeleton induces a collision 
of contours.

Now, you might notice a feature in each of these poly-
gons that is a bit out of the ordinary: in both of them, the 
straight skeleton contains vertices that don’t lie on the grid. 
And those non-grid vertices are, in fact, the nasty beasties of 
both of these patterns. At vertices where ridge creases come 
together, some additional axis-parallel creases must arise. If 
we force those points to lie on grid points, then we can insure 
that those additional creases are well behaved on-grid axis-
parallel creases.
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We can insure that all straight skeleton vertices lie on grid 
points by insuring that every side of the hinge polygon is an 
even number of units in length. That is often relatively easy to 
do, but this policy may force some polygons to be larger than 
we’d like, resulting in longer flaps, or greater usage of paper. 
There may very well be places where we’d like to use short 
flaps—flaps of length 1/2 unit turn out to be useful in adding 
folded edges for very little cost. In such circumstances, the 
ideal design may very well be a mixture of even-semiperimeter 
polygons, odd polygons, and level shifters.

14.4. Overlapping Polygons
I have mentioned several times that circle packing pro-

duces the most efficient uniaxial base possible. By “most ef-
ficient,” I mean that the size of the base relative to the size of 
the square is maximal. In very broad, general terms, efficiency 
is a good thing; a more efficient base will have fewer layers (on 
average) than an inefficient base, which means that the slender 
parts (like legs) will be easier to make thin. 

But efficiency is not the most important criterion in ori-
gami design by a long shot, even in the narrow slice of design 
that is uniaxial base design. Perhaps even more important is 
foldability: how easy is it to do the precreasing and the collapse 
of the base? These two steps are the Achilles’ heel of circle-
packed bases: the crease patterns can be so irregular that the 
process of precreasing becomes a grueling ordeal of measuring, 
marking, folding; repeat ad nauseum. The beauty of box pleat-
ing as a strategy for base design is that the crease patterns 
are so regular that only a simple grid of marks is needed, and 
many, or even all, of the creases may be constructed by folding 
alone. But one of the prices one pays for this foldability is ef-
ficiency; box-pleated designs are inherently less efficient than 

Figure 14.12. 
A hinge polygon with an even 
semiperimeter but that thwarts 
alternating contours because of 
the bouncing pattern.
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circle-packed designs. In some cases, the efficiency penalty 
can be 40% or worse.

The inefficiencies in box pleating come about because 
the fundamental packing objects, e.g., squares, do not pack 
with the same versatility that circles do. An extreme case is 
illustrated by the packing consisting of two equal-length flaps 
into a slightly-too-small square where one of the flaps must 
lie on the symmetry line, as shown in Figure 14.13. 

collision Figure 14.13. 
A packing of two circles and 
squares into the paper square in 
which the square corners prevent 
a close packing of their respective 
circles.

In the packing shown in Figure 14.13, if we were circle 
packing, we could easily get the two circles much closer to 
each other than is shown here. But using square packing, 
the corners of the two minimum squares collide and we can’t 
get them any closer. This limitation results in considerable 
wasted space and forces a much larger square (for a given 
desired base), or equivalently, more layers of paper in the 
resulting base.

Maybe, though, there is a hybrid solution, which gets a 
little closer to circle packing in terms of efficiency, but still 
maintains the grid structure of a box-pleated design. In order 
to get the circle centers closer to each other, we will have to 
let the minimum-size squares overlap. But we still can’t allow 
the circles to overlap. If we want the polygon center to lie on 
a grid point, then between square overlap and circle overlap, 
there is a small set of grid points that constitute acceptable 

collision
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centers for the central circle. If we draw a circle around the 
lower circle whose radius is the sum of the radii of both circles, 
then any grid point lying on or outside of this larger circle would 
be acceptable. This larger circle defines a “zone of acceptability” 
for the center of the second circle; each grid point within this 
zone (on or outside of the larger circle) could be a circle center. 
These points are shown in green in Figure 14.14.

zone of
acceptability

potential
closer
circle
centers

Figure 14.14. 
Circle centers for overlapping 
squares.

Now, clearly, if we’re violating the rules of spacing for box 
pleating, something has to be different in the crease pattern, 
and as we will see, we will lose the property of all creases run-
ning along gridlines or at multiples of 45°. But we can still find 
creases that give distinct flaps of the right shape. The two circles 
lie at diagonally opposite corners of a rectangle, and we can use 
the gusset quad molecule to find the ridge creases that go into 
this rectangle. Those creases are shown in Figure 14.15.

So we can still generate creases that define the two poly-
gons around each circle, and while there is a bit of irregular-
ity in the crease angles, observe that several of the vertices of 
the new creases still fall on grid points. In fact, the only two 
vertices that don’t necessarily fall on grid points are the two 
extreme corners of the gusset—and even these lie on diagonal 
lines. We can solve analytically for the positions of these two 
vertices, given the other dimensions of the surrounding figures, 
as shown in Figure 14.16.

The pattern contains two recognizable rectangles; the 
outer rectangle (with sides s1 and s2) is the bounding box of the 
two circle centers, and this rectangle has its corners on the grid. 

potential
closer
circle
centers

zone of
acceptability
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boundary of
gusset
quadrilateral
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s2 r1

r2
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t
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′A ′B

B
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Figure 14.15. 
Ridge crease for the two over-
lapping squares, which come 
from the gusset quadrilateral 
molecule.

Figure 14.16. 
Left: key distances in the gusset quadrilateral molecule for overlap-
ping squares. 
Right: the arrangement of vertices in the folded form. The axis is 
horizontal.

Then there is an inner rectangle, which is the bounding box 
of the gusset. The gusset fold itself is the diagonal crease of 
this inner rectangle, and the two ridges on either side of the 
gusset are rabbit ear folds (angle bisectors) of the two triangles 
formed by dividing this inner rectangle. The inner rectangle 
is inset from the other rectangle by some distance; if we had 

boundary of
gusset
quadrilateral
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this inset distance, we could easily construct all of the other 
creases by simple geometry or folding.

Define the following parameters of the configuration:

• Let s1 and s2 be the sides of the outer rectangle (the 
bounding box of the two circle centers).

• Let h be the inset distance of the inner rectangle 
from the outer one.

• Let t be the inset distance of the peak of the rabbit 
ear molecule from the outer rectangle.

• Let d = r1 + r2 be the minimum allowed distance 
between the two circles (of radii r1 and r2, respec-
tively).

Then a little bit of geometry and algebra gives the follow-
ing formulas for both h and t:

           , (14–1)

                 .      (14–2)

With these two formulas, one can easily solve for the inset 
distances h and t, and can then construct the rest of the ridge 
creases.

In general, there will be a solution if and only if

            , (14–3)

that is, if and only if the diagonal of the outer bounding box 
is greater than or equal to the minimum spacing between the 
circle centers. This is just the circle-packing condition. Thus, 
there is a solution whenever the sides of the bounding box and 
their minimum spacing satisfy an inequality form of Pythago-
ras’ formula for right triangles. Because of this correspondence, 
I call these overlapping-square structures Pythagorean stretch-
es—Pythagorean because of the connection to right triangles, 
and stretches, because, like the gusset molecule, they arise 
by “stretching” diagonally opposite corners of a sawhorse (or 
Waterbomb) molecule. 

Even a little overlap between squares can kill a pure circle-
packed design that is otherwise highly efficient, but introduc-
ing a Pythagorean stretch can make everything fit just so. An 
example is shown in Figure 14.17, which is a Longhorn Beetle, 

t =
s1 + s2( )− d

2

h =
s1 + s2( )− d

2
−

d − s1( ) d − s2( )
2

f =
1
2

cscα − 1( )
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an update from the Cerambycid Beetle shown earlier. In this 
beetle, I have added rivers (to space the legs apart) and level 
shifters (to widen the abdomen). In a pure box-pleated design, 
the leg spacer rivers are squeezed between the front and hind 
legs, but the introduction of a Pythagorean stretch adds just 
enough extra space to make everything fit neatly.

A fully assigned crease pattern and photograph of the 
finished model are given at the end of the chapter.

The most common location for a Pythagorean stretch is 
at the corners of the square, as in Figure 14.17, since that 
is the most common place where square packing leads to an 
inefficient collision, but they can in fact be used anywhere. 
The Camel Spider shown in Figure 14.18 uses a total of eight 
Pythagorean stretches: one at each of the four corners and four 
more in the interior of the pattern, to obtain the greatest ef-
ficiency in the usage of paper for this long-legged creature.

This, too, has a fully assigned crease pattern and photo-
graph at the end of the chapter.

There is a special case of Pythagorean stretch that is par-
ticularly elegant, which is the limiting case of equality in the 
preceding equation. In this case the inset distance h vanishes 
and the corners of the gusset are located at the circle centers. 
This happens when the bounding rectangle and the minimum 
distance form a Pythagorean triple, that is,

        . (14–4)

Figure 14.17. 
Contour map and folded model for the Longhorn Beetle. 

� 

s1
2 + s2

2 = d2
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When this happy state of affairs arises, I call this structure 
a perfect Pythagorean stretch, and the result is illustrated in 
Figure 14.19. 

Figure 14.18. 
Contour map and folded model for the Camel Spider, which incorpo-
rates eight Pythagorean stretches. 

Figure 14.19. 
A perfect Pythagorean stretch.
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Aesthetically speaking, I find the perfect Pythagorean 
stretch to be the most elegant form of this overlapping-squares 
structure, but Pythagorean triples are relatively rare among 
the small integers, and so it is good to know that there is a 
solution for any combination of rectangle and overlap. It’s also 
not necessary that the “perfection” be exact. If the computed 
height h is fairly small relative to a unit, then it’s often possible 
to simply “fudge” the excess paper out of existence, connecting 
the two rectangle corners directly and then slightly adjusting 
the rest of creases during the actual folding process.

This design pattern—letting the polygons overlap and 
then introducing a set of gusset ridge creases—is, like the 
level-shifting gadget, more than a mathematical curiosity; 
it is a very useful tool in box-pleated design, particularly 
around the corners of the square. Figure 14.20 shows a crease 
pattern and photograph of a Water Strider. The use of four 
Pythagorean stretches allows much longer and thinner legs 
to be obtained than a pure box-pleated solution would allow, 
but the overall pattern of box pleating makes the crease pat-
tern easily constructible and leads to overall alignment of the 
edges, permitting a relatively neat folded form. 

Now, the three parameters that define the structure of 
a Pythagorean stretch are the minimum distance d between 
the two relevant circle centers and the length and width s1 

Figure 14.20. 
Contour map and folded model for the Water Strider. 
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and s2 of the enclosing rectangle. All of the dimensions of the 
gusset folds and ridge vertices follow from there. But I draw 
your attention to the distance marked t in Figure 14.16, which 
is the distance from the side of the enclosing rectangle (which is 
on gridlines) to the peak vertex of a ridge crease, whose value 
is given by Equation (14–1). This distance is either integral 
or half-integral, depending on the value of the expression s1 + 
s2 – d (even = integral, odd = half-integral).

If the distance is half-integral, then that ridge crease ver-
tex will not fall on a grid point, and that, in turn, implies that 
somewhere between the two opposite corners of this gadget, 
there must be two axis-parallel creases one unit apart; and 
this, in turn, implies that we would have implicitly introduced 
at least one half-integral axis-parallel crease. This, in itself, 
would not be so bad, except for the fact that once we’ve intro-
duced one half-integral fold somewhere, it can rattle around 
for quite a while in the crease pattern as it bounces off of ridge 
creases, halving flap widths where we really don’t want them 
to be halved.

Figure 14.21 shows two similar stretches. Both fit two r = 
5 circles together, so the minimum distance between the two 
circle centers is d = 10. On the left with circle A, we fit them 
into a 9 × 6 rectangle with s1 + s2 – d = 5, which is odd. On the 
right with circle B, we fit them into a 9 × 7 rectangle with s1 + 
s2 – d = 6, which is even. And indeed, the one on the left creates 
a level conflict if we strive for alternating elevations, whereas 
the one on the right works just fine with alternating elevations 
from one axial crease to the next.

s1 = 9 s1 = 9

s2 = 6                                                                                        s2 = 7

!

A
B

Figure 14.21. 
Two Pythagorean stretches 
for minimum separation of 10 
units. Left: a 9 × 6 rectangle. 
Right: a 9 × 7 rectangle.
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Part of the reason we have conflict with odd-order Py-
thagorean stretches is that we have assumed as part of the 
geometry that the gusset is itself axis-parallel; this implicitly 
assumes that the two circle centers lie at the same elevation. 
If one is axial, the other must be axial. But the fact that their 
separation, measured along the perimeter of the two overlap-
ping squares, is odd suggests that if we want alternating eleva-
tions, the two circle centers should lie at different elevations. 
And this, in turn, gives an entirely different geometry to the 
creases and vertices in the region of overlap.

We can solve for the dimensions of this new geometry. 
It is similar to that of Figure 14.16, but now the two vertices 
A and B, instead of both being shifted upward from the axis 
in the folded form are shifted equal distances, one upward 
from the axial contour, the other downward from the axial+1 
contour, as shown in Figure 14.22. 

s1

s2

r1

r2

h

d

A

B

A

′A

h

′A

′B
B

′B h

Figure 14.22. 
Schematic of an offset Pythagorean stretch. Left: crease pattern. 
Right: projection of the folded form with ridge creases in red.

If we again denote the offset distance by h, we find a 
somewhat different expression for the offset in this configu-
ration:

             . (14–5)

� 

h =
s1

2 + s2
2 − (d2 +1)

4(s1 + s2 − (d +1))
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This is simple to evaluate, and for closely overlapping 
circles, tends to give small, rational, easily constructed fractions 
for the distance h. For the example shown in Figure 14.21, we 
have s1 = 4, s2 = 6, d = 7, and thus h = 1/4.

I call this type of structure an offset Pythagorean stretch. 
Like the ordinary stretch seen above, there is a particularly 
elegant configuration when the “gusset” runs from corner to 
corner, which would be a perfect offset Pythagorean stretch. 
It arises when

      , (14–6)

or just one off from the ordinary Pythagorean condition.
The construction of the other creases in the offset Pythago-

rean stretch is a bit more involved, since the various creases 
involved run at angles other than axis-parallel. I will leave 
those as an exercise for the reader.

Pythagorean stretches provide a nice, efficient compromise 
between the pure regularity of polygon packing (which can be 
inefficient) and the maximal efficiency of circle/river packing 
(which can be quite irregular). However, the regular (non-
offset) form sometimes exhibits a phenomenon I call gusset 
slivers, when the axis-parallel folded contours are spaced very 
closely to the gusset fold of the stretch. You can see examples 
of both of these in the Longhorn Beetle of Figure 14.17 and the 
Camel Spider of Figure 14.18. Gusset slivers are aesthetically 
undesirable in the crease pattern, and they can be difficult to 
fold neatly. The unit of flap width sets a natural minimum fea-
ture size for the crease pattern, since the vast majority of the 
creases are spaced by this width. When one is folding a figure 
from small paper (for small finished size), we would really like 
to avoid having parallel creases spaced more closely than this 
minimum feature size.

As you can see in the examples, though, the most common 
place to find Pythagorean stretches is near the corners of the 
paper; the Pythagorean stretch is used to “cut the corner.” A 
complete Pythagorean stretch mates cleanly to axial contours 
on all four sides of its bounding rectangle, but if we don’t care 
what happens on two of the sides, we can wipe out many of 
the creases and replace them with a new set that respects our 
desired minimum feature size, most straightforwardly by using 
the procedure illustrated in Figure 14.23.

The process starts by erasing the problematic gusset 
crease, and all creases between it and the corner of the paper, 
and extending the two ridge creases to the edges of the paper. 
Next, we add an axis-parallel crease, but one whose spacing 

� 

s1
2 + s2

2 = d2 +1
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Figure 14.23. 
Top left: a representative Pythagorean stretch that has a gusset 
sliver (highlighted). 
Top right: we remove the creases that make up the gusset sliver 
and lie between it and the corner. 
Bottom left: a new axis-parallel crease is added at unit distance. 
Bottom right: more creases are added that are the mirror image of 
the main pattern.

from the apex of the ridges is equal to the unit of width. Last, 
we create new creases that are the mirror image of those on the 
opposite side of the new gusset crease. (These are the creases 
that would have resulted if we folded the paper underneath on 
the new crease, and then made all of the other folds through 
all layers together.) As you can see from the dotted lines in 
the two bottom subfigures, what we are doing is, effectively, 
creating a perfect Pythagorean stretch in a somewhat larger 
quadrilateral that extends outside of the original paper. Since 
we are extending the quadrilateral of the stretch beyond the 
boundaries of the paper, I call this variation an extended Py-
thagorean stretch. 
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There is more than one way to make an extended Py-
thagorean stretch; there is a range over which we can vary the 
geometry. The angle between the two ridge creases is fixed by 
the laws of flat foldability at 135°, but the orientation of the pair 
of creases as a unit is not fixed (in the same way that the two 
ridge creases of a level shifter were fixed in relative angle but 
not absolutely). We can pivot the pair as a unit freely, within 
a modest range, as shown in Figure 14.24. Beyond this range, 
you will shorten the flap on one side or the other by cutting off 
its tip, but within this range, you can arbitrarily choose the 
position of the wedge of ridge creases.

Figure 14.24. 
The two ridge creases can be 
pivoted within the indicated 
range so long as they keep to a 
relative angle of 135°.

Quite often, one of the two extreme angles is going to be 
more desirable than an intermediate configuration because it 
places one or the other crease on a grid point on the edge of the 
paper. We can analyze the general case by noting that, as shown 
in Figure 14.25, in all positions, there is a right triangle that 
circumscribes a circle of radius t, where t is the elevation of the 
apex of the ridge creases that was given by Equation (14–1).

We define the width and height of the extended rectangle 
to be x and y, respectively. Then we can choose either one and 
solve for the other. If we choose the value of x, then

     , (14–7)

and if we set x = s1, so that one of the ridges hits the bottom 
right corner of the rectangle within the paper, then

        . (14–8)

x =
2t(y − t)

y − 2t

x =
s1 + s2 − d( ) s2 + d − s1( )

2 d − s1( )

© 2012 by Taylor & Francis Group, LLC



649Chapter 14: Polygon Packing 

Conversely, if we choose the value of y, then

     , (14–9)

and if we set y = s2, so that one of the ridges hits the upper 
left corner, then

       . (14–10)

These tend to be small rational numbers, and so are 
usually easily constructible (often purely by folding). The two 
cases for the test configuration I’ve been using for illustration 
are shown in Figure 14.26. Note that in the case on the left, 
several of the vertices fall neatly on grid points. This type 
of pleasant coincidence happens fairly often. Note, too, that 
you don’t actually have to construct the creases between the 
highlighted crease and the corner; if you simply fold the corner 
underneath prior to precreasing, then the necessary creases 
will be formed in place when you fold the rest of the model 
through the resulting double layer of paper.

An example that illustrates extended Pythagorean 
stretches is shown in Figure 14.27. This is a simple Scarab 
Beetle, but because the extended Pythagorean stretches avoid 
gusset slivers, it can be folded well at relatively small size. 
Observe that this model, too, uses level shifters to selectively 
widen the body relative to the legs.

s1

s2

r1

r2
t

y

x
Figure 14.25. 
Geometry of an extended Py-
thagorean stretch.

x =
2t(y − t)

y − 2t

x =
s1 + s2 − d( ) s2 + d − s1( )

2 d − s1( )
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Figure 14.26. 
Two versions of an extended Pythagorean stretch.

0 1 2
1/2

12
1/2

Figure 14.27. 
Crease pattern, base, and folded model of a Scarab Beetle that uses 
four extended Pythagorean stretches. 

As you look through the figures of the various Pythagorean 
stretches in this section, you might notice that I have drawn 
in the hinge creases that divide the two touching flaps. These 
are the actual divisions between the hinge polygons for each 
flap and so give rise to hinge polygons that are not rectilinear. 
Although we have constructed the ridge creases in these Py-

© 2012 by Taylor & Francis Group, LLC



651Chapter 14: Polygon Packing 

thagorean stretches in a very different way from the straight 
skeleton, it turns out that even in Pythagorean stretches, the 
ridge creases are the straight skeleton of the underlying hinge 
polygons, no matter how irregular they may be.

14.5. Tight Meanders
Back when I was setting out the rules for polygon packing, I 
said that while hinge polygons could be as large as possible, 
hinge rivers had to be precisely the width of their correspond-
ing flap. While that is indeed the case, there is a way of ap-
parently fattening rivers selectively along their length, using 
a technique devised by Toshiyuki Meguro. 

We don’t really fatten the rivers, though; the constancy 
of their width is truly a law of polygon packing. What we do 
is make them extremely tightly wound to increase their ap-
parent width. Hinge rivers in uniaxial box pleating bend at 
right angles, and if two bends come in immediate succession, 
then the river can actually double back on itself, in a shape 
I call a meander. Figure 14.28 illustrates this process for a 
1-unit-wide river with successively tighter meanders.

Figure 14.28. 
1-unit hinge rivers. Top: a simple 
river. 
Upper middle: a single meander. 
Lower middle: the meander with 
the gap on the bottom closed up. 
Bottom: a string of successive 
meanders.

The bottom subfigure shows a sequence of such meanders 
in which the gaps, both top and bottom, are entirely closed. 
The result is, effectively, a 1-unit river that widens to two 
units for a portion of its length.

Note that while the gap outside of the two banks of the 
river has completely closed up, we still have the 1-unit-high 
hinge creases on both top and bottom; these interdigitated 
“teeth,” and the associated ridge creases, are what preserve 
the 1-unit width of the river. You can think of these hinge 
“teeth” as infinitesimally thick peninsulas extending into the 
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river from each bank (perhaps we could call them docks?) that 
limit the maximum width.

One can, of course, use the same technique to obtain 
broader widenings, and in fact, once the total width is 3 units 
or more, all sorts of complicated patterns become possible. 
The two examples shown in Figure 14.29 merely hint at the 
possibilities.

Figure 14.29. 
Top: a 3-unit-wide broadening of 
a river with meanders. 
Bottom: an alternate broaden-
ing with a different set of me-
anders.

By introducing meanders into the hinge rivers, we can 
selectively widen parts of them and so use rivers to “soak up” 
extra paper in the crease pattern. Why might we want to do 
this? At first blush, this might seem to be a needless complica-
tion. It is certainly clear that introducing tight meanders of this 
sort creates a lot of new 45° ridge creases; they can significantly 
add to the complexity of a crease pattern.

But they have a side effect that could be very useful: me-
anders allow you to change elevation from one side of the river 
to the other. If we have alternating axial and axial+1 contours, 
when they hit an ordinary river, they proceed across the river 
banks without stopping or changing, as shown in the top sub-
figure of Figure 14.30.

If, however, we introduce a 1-unit-wide pattern of mean-
dering into our river, then when the contour lines hit the top of 
the river, they bounce off of the ridge creases, and when they 
come out the bottom, the positions of the axial and axial+1 
contours have been reversed. So, in effect, meanders can act 
as a form of level shifter, but with nice 45° ridges and vertices 
on grid points.

Everything I’ve shown thus far has been with 1-unit wide 
rivers, but rivers come in all widths. Certainly a 2- or 3-unit 
wide river could be meandered in exactly the same way, but we 
have an additional degree of freedom with these wider rivers 
because every river can be viewed as a set of parallel 1-unit-
wide rivers that all “flow” in the same direction and pattern. 
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Figure 14.30. 
Top: a set of axial and axial+1 
contours crossing a simple 1-unit 
river. 
Middle: the same contour pat-
tern crossing a meandered river. 
Note that the elevations have 
reversed. 
Bottom: the fully crease-assigned 
meandered river.

Figure 14.31. 
A 3-unit-wide river, split into 
three 1-unit-wide rivers with 
meanders: one on the left, two 
on the right.

Thus, we could take a 3-unit-wide river, split it into three 
1-unit-wide rivers, and then selectively widen one or two of 
those subrivers with meanders, as shown in Figure 14.31.

Occasionally, one might even wish to use half-unit-
width meanders. This might be puzzling at first. As we saw 
earlier, if we create patterns of ridge creases with vertices 
at half-integral positions, this can lead to 1-unit spacing of 
same-elevation contours, which then forces half-unit width 
flaps. So why would we intentionally introduce half-unit-width 
meanders?

The reason is that sometimes one half-integral structure 
can be used to cancel out half-integral contours created by 
a different structure. An example is shown in Figure 14.32, 
where a string of half-unit polygons is separated by a string 
of half-unit rivers. This gives rise to a single flap with a se-
ries of half-unit flaps along its length; useful, for example, in 
creating a segmented region of a body without wasting much 
paper. If we want the flap to be 1 unit wide, i.e., composed of 
alternating axial and axial+1 contours, the half-unit-length 
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flaps mess up the contour spacing along the sides. However, 
by introducing half-unit-wide meanders at selected places, we 
can straighten out the contour elevations, limiting the axial+1/2 
folded contours to just a few hidden locations.

?

?

?

Figure 14.32. 
A packing of rivers and rect-
angles that gives rise to a seg-
mented flap like the one on the 
right. Rivers are highlighted. 
On the left, the pattern of ridge 
creases breaks the alternation of 
elevations. On the right, selected 
meanders fix the problem.

The left side of the packing in Figure 14.32 shows a 
straightforward packing of 1-unit-tall rectangles and simple 
rivers. (I have highlighted the hinges and rivers to help distin-
guish them.) If we come in from the top with alternating axial 
and axial+1 contours, though, the pattern of ridges forces pairs 
of same-elevation creases to be one unit apart; furthermore, 
there is no way to assign the creases marked with “?” without 
creating further elevation errors. On the right side, however, 
by selectively introducing half-unit meanders into three of the 
rivers, we can compensate for this problem so that the creases 
running down the side similarly alternate axial/axial+1. 

There’s often more than one way to solve a design prob-
lem, and sometimes very slight changes in the design can be 
met by very different solutions. Shifting all of the 1-unit flaps 
downward by 1/2 unit barely changes the crease pattern and 
doesn’t alter the underlying problem of forced contours at the 
same elevation. However, with this shift, an elegant application 
of level shifters reveals itself; although one could, in principle, 
use the symmetric level shifters of Figure 14.7, the asymmetric 
version of Figure 14.9 permits a particularly simple and elegant 
solution to getting alternating elevation down the sides, as in 
Figure 14.33.

I have used both of these techniques in several designs to 
realize segmented body portions. One example is illustrated 
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by the Cicada Nymph shown in Figure 14.34, which uses the 
level-shifting technique of Figure 14.33 but widens the body by 
shifting all of the elevation creases by one-half unit, effectively 
adding a 1-unit strip down the middle of the base. 

There are two ways to look at this contour map and base. 
One is to think of it as an ordinary uniaxial base with a strip 
graft down the center (and that is the way that I have illus-
trated it), so that the contours are at elevations 0, 1/2, 1, and 2. 

?

?

Figure 14.33. 
A similar packing with a solu-
tion via level shifters that give 
alternating elevations down the 
right side.

0 1 212 0

Figure 14.34. 
Contour map, base with elevations marked, and folded model for 
the Cicada Nymph.
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One could, of course, simply redefine the axial (0) contour to be 
the middle of the base, in which case folded contour lines would 
appear at elevations 0, 1/2, 1, 3/2, and 5/2.

A fully assigned crease pattern and photograph of the fin-
ished model are given at the end of the chapter. Once you have 
folded this, as a practice challenge, you might try seeing if you 
can alter the crease pattern to replace the abdomen segmenta-
tion with the technique shown in Figure 14.32.

14.6. Dense Bouncing
Throughout this discussion of uniaxial box pleating, an impor-
tant notion has been the idea that all of the patterns lie neatly 
on a grid. In many of the figures thus far, that grid is explicit. 
It certainly makes it easy to fold a crease pattern if its verti-
ces and lines fall upon a grid, but there is a deeper reason for 
requiring a grid, illustrated by the simple uniaxial box-pleated 
pattern shown in Figure 14.35.

Figure 14.35. 
A uniaxial box-pleated pattern. 
How far does the bouncing con-
tour go?

This pattern is relatively simple, consisting of four quad-
rilaterals, two of them L-shaped. The vertex marked with a 
black dot is some contour line, not necessarily axial. Suppose 
we launch it perpendicularly toward the closest hinge line and 
start the process of bouncing around the ridge creases. A little 
bit of that process is shown. Where and when does the contour 
close and/or run off of the paper?

The answer, as it turns out, depends critically upon the 
dimensions of the two L-shaped figures in the bottom half of the 
pattern. The way to see this is to cut the paper in half along the 
horizontal hinge in the middle, as shown in Figure 14.36 and, 
for each half, plot the horizontal position at which a vertical 
crease, upon entering the pattern, exits. For simplicity, let’s 
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define the left boundary of the pattern to be 0 and the right 
boundary to be 1. We can then plot the transfer function of the 
pattern: that is, make a plot of the position where a contour 
line exits the pattern as a function of where it entered.

0 1x 1 – x

a

0 1 x

g(x)

0

1

0 1 x

f (x)

0

1

0 1

a

a

xxa – x a – x + 1

Figure 14.36. 
Top left: the upper portion of the crease pattern. 
Top right: transfer function for a bouncing contour line. 
Bottom left: the lower portion of the crease pattern. 
Bottom right: transfer function for a bouncing crease pattern.

The top half of the pattern is quite easy to analyze, as 
shown in the upper half of the figure. If a crease enters the 
pattern at position x, it exits the pattern at position 1 – x. If 
we define f(x) as the output position for a given input position 
x, we have

               . (14–11)

The analysis of the bottom half is a bit more complicated; 
there is a discontinuity at horizontal position x = a. If the 
contour enters somewhere below x = a, then it comes out at 
position a – x, but if it enters anywhere above x = a, then it 
comes out at position a – x + 1. We can express this behavior in 
a single function, which we will call g(x), which is given by

       . (14–12)

f (x) = 1− x

g(x) = a − x( ) mod 1
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Here the “mod 1” indicates the “modulo” function; basi-
cally, we add or subtract integers to/from (a – x) until the result 
lies between 0 and 1. The function g(x) is plotted in the bottom 
right subfigure of Figure 14.36.

The horizontal position of a contour after it has made one 
complete circuit through both top and bottom halves is the 
result of applying g(x) followed by f(x), which works out to be

            . (14–13)

After two circuits, it will be at position

         . (14–14)

And, in general, after n circuits, it will be at position

        . (14–15)

So the question of when, or if, the contour ever closes on 
itself is equivalent to the question of when or if the value of (x – 
na) mod 1 ever comes back to the value x. This, in turn, happens 
when (x – na) differs from the value of x by some integer k, so 
that the modulo function takes it back to its starting position. 
And that only happens if the distance a takes on the value k/n, 
i.e., some rational number. If a = k/n for some integers (k,n), 
then the contour will close on itself after n circuits through 
both top and bottom. Note, though, that there is no value x for 
which the bouncing runs off the page, so it must either close on 
itself, or keep going, which means the following: if the distance 
a is irrational, the bouncing contour never closes on itself nor 
runs off the page.

If the bouncing never stops, it means that there is an in-
finite number of contours that are infinitely close together, so 
that the flap, if we could fold it, would be infinitely thin, but 
with an infinite number of layers—which would be a serious 
problem. The contours, in this case, are said to be dense on 
the paper.

This concept of dense contours was discovered by Erik 
Demaine in the course of his solution of the one-cut problem; 
there, too, there were creases (exactly analogous to the contour 
lines in polygon packing) that never settled down, but bounced 
around forever. 

It is a well-known fact of mathematics that there are in-
finitely more irrational than rational numbers, so that if you 
were to pick the dimension a at random, the odds are infinitely 
higher that you would have picked a value that gave infinite 

h(x) ≡ f (g(x)) = x − a( ) mod 1

h(h(x)) = x − 2a( ) mod 1

hn (x) = x − na( ) mod 1
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bouncing contours rather than a nice, well-behaved rational 
value. That means that we can’t just pick distances randomly; 
we must make a conscious choice of flap length, carefully 
chosen to avoid dense bouncing.

And that is exactly what the use of a grid in uniaxial box 
pleating accomplishes. By putting all of our polygon lines on 
grid points, it insures that any contour line that enters a poly-
gon on a grid line will exit on a grid line. This clearly limits the 
amount of bouncing, because once the contour lines have filled 
up all possible grid lines, any new contour must terminate on 
an existing contour or run off of the paper. Once you’ve tried a 
few uniaxial box-pleated designs, you will find that surprisingly 
often, this is exactly what happens, and the bouncing axial con-
tours fill up all available grid lines (which necessitates putting 
the axial+1 contours at half-grid positions).

Infinite bouncing contours don’t happen in circle-packed 
designs because in a rigidly packed circle/river packing, the 
axial creases in adjacent polygons are guaranteed to be aligned 
collinearly with one another. But circle packings have irregu-
lar crease patterns. In polygon packing, we gain “niceness” 
in the crease pattern, but we give up the guarantee of axial 
crease alignments that prevent infinite bouncing, and so we 
must take special precautions to keep the contours finite.

And grids are one way to accomplish this control. Uniaxial 
box pleating puts all lines, and all polygons, on a square grid. 
This forces all hinges (and, as well, all axials and constant-
elevation creases) to run at multiples of 90°, which is another 
“nice” feature. But a square grid is not the only grid that has 
this elegant property, as we will now see.

14.7. Hex Pleating
Back at the beginning of Chapter 13 I introduced the term 
“polygon packing,” and then moved fairly quickly to “uniaxial 
box pleating” as an example of polygon packing. Why use two 
different terms for the same thing? Because the concept of 
polygon packing is much broader than uniaxial box pleating. 
The basic idea of polygon packing is simply that we choose 
“nice” hinge polygons from which to construct our uniaxial 
base. But there are many different ways of creating “nice” 
hinge polygons. Uniaxial box pleating chooses “nice” to mean, 
“all edges run at multiples of 45°.” That gives nice, symmetri-
cal crease patterns and easy-to-precrease crease patterns. But 
it’s not the only symmetry game in town.

Polygon packing and uniaxial box pleating are not syn-
onymous because it’s possible to use other angles in polygon 
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packing. There is an entirely new family of polygon packing out 
there that, unlike box pleating, has not been widely exploited. I 
call it uniaxial hex pleating, or just hex pleating for short. Hex 
pleating, too, is a form of polygon packing, but it uses different 
polygons and rivers, with all edges running at multiples of 30°, 
not 45°. Instead of leading naturally to patterns of squares, hex 
pleating leads naturally to various combinations of equilateral 
triangles and/or hexagons.

Like box pleating, hex pleating is most easily carried out on 
a grid, both for simplicity of drawing, and to avoid the problem 
of infinite bouncing. But instead of using square grid patterns, 
we will use a grid of equilateral triangles. The centers of the 
packing circles will be at vertices of the grid; the edges of the 
hinge polygons will run along these grid lines. Some examples 
of hinge polygons and polygonal rivers on such a triangular 
grid are illustrated in Figure 14.37.

Figure 14.37. 
Hinge polygons for hex pleating. 
Top row: 1-unit flaps. 
Middle and bottom: 1-unit rivers 
and 2-unit flaps.

As with uniaxial box pleating, the hinge creases run along 
grid lines. Since there are three possible directions for hinge 
lines rather than two, there is a much wider variety of shapes 
that hex pleating hinge polygons take on. Also as with box 
pleating, the minimum-size polygon for a given length flap is 
the minimum polygon that encloses a circle whose radius is the 
length of the flap. That means that the minimum-size polygon 
is a hexagon; two examples are shown in Figure 14.37. Since 
a hexagon is a better fit to a circle than a square, this means 
that hex-pleated flaps can be slightly more efficient than box-
pleated flaps. (The difference is, however, small.)

One noticeable difference between hex pleating and box 
pleating is that in the former, there is a definite distinction 
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between “up and down” and “side to side” directions. In box 
pleating, any hinge polygon or river that fit on the grid would 
work equally well if it were rotated by 90°. But this is not the 
case with hex pleating. Observe that in Figure 14.37, there 
are hinges that run horizontally, but none that run vertically. 
The same goes for the underlying grid, of course. If we were to 
flip our grid by 90°, we could still carry out hex pleating, but 
we would have to use a different set of hexagons and rivers, 
ones that were flipped by 90° from what is shown here.

As with box pleating, the ridge creases are given by the 
straight skeleton of any polygon. That is, they propagate in-
ward from every corner, traveling along the angle bisectors. 
The ridge creases for the hinge polygons of Figure 14.37 are 
shown in Figure 14.38. The construction process is exactly 
the same as described earlier for more complicated hinge 
polygons.

Figure 14.38. 
Ridge creases in hex-pleating 
hinge polygons.

Hinge creases can run in any of three different directions, 
but ridge creases can run in any of six. There are no vertical 
hinge creases (for this orientation of the grid), but there are 
both horizontal and vertical ridge creases, and we can see ex-
amples of them all here. We can also see that rivers can bend 
at two distinct angles: 60° and, more sharply, at 120°.

Once one completes a packing, one constructs the axis-
parallel creases, beginning, typically, with the axials. If we 
assume that all of the flaps in Figures 14.37 and 14.38 are 
axial flaps (i.e., their tips are axial points), then we can con-
struct all of the forced axial creases—which, you may recall, 
propagate from the tip toward any and all accessible hinge 
creases. Figure 14.39 shows the polygons with axials added.
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Since axial creases are perpendicular to hinge creases, 
and hinge creases can run in three directions, axial creases, 
too, can run in three directions, which are the directions of 
the hinge creases rotated by 90°. There are no vertical hinge 
creases, as we have seen (with this grid); therefore, there are 
no horizontal axial creases, and that matters for the orienta-
tion of the base. Remember that we have seen that for a plan 
view base, there must be a continuous chain of axial creases 
running up the middle of the crease pattern from bottom to 
top. This chain forms the spine of a booklet that is opened flat 
into the base. If there must be some vertical axial crease, then 
the hinge creases that it crosses must all be horizontal and we 
must use the grid orientation of these last few figures, i.e., the 
grid lines must include a horizontal set.

Note, too, that the axial creases do not run along grid lines 
(as they did in box pleating). Since the axials are perpendicu-
lar to the hinges, and the hinges run along grid lines, no axial 
crease (or axis-parallel crease) can ever run along a line of the 
triangular grid. Instead, axials and axis-parallel creases run 
along lines of a separate grid that shares vertices with the hinge 
crease grid. You can draw this grid, if you like; I will not display 
it in the drawings here to keep them (relatively) uncluttered.

Another difference between uniaxial box pleating and 
uniaxial hex pleating arises in the proportions of the generated 
flaps. This becomes evident by considering the dimensions of 
the smallest possible flap in either system.

Figure 14.40 shows the 1- and 2-unit hinge polygons for 
box pleating and hex pleating for two same-size circles and the 
resulting flaps for comparison.

If we define both grids so that our “unit” gives the length 
quantization, then for the same length flap, the hex-pleated flap 

Figure 14.39. 
Hex-pleating hinge polygons 
with forced axial contours.
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Figure 14.40. 
Fully assigned crease patterns for 1- and 2-unit hinge polygons and 
silhouettes of their folded forms. 
Left: uniaxial box pleating. 
Right: uniaxial hex pleating.

is noticeably narrower than its box-pleated equivalent. The 
minimum-length box-pleated flap is as wide as it is long; the 
minimum-length hex-pleated flap is only 1/√3 times as wide 
as it is long—about 58% of the length.

That means that hex-pleated flaps are naturally narrower 
than their box-pleated kin. This may or may not be desirable. 
For insect legs, for example, one can almost never go too thin. 
But for the body segments, one typically would like those 
flaps to be much wider. In that case, one will be working at 
a disadvantage with hex pleating, though of course, one may 
use level shifters to selectively widen flaps, just as with box 
pleating, as we will shortly see.

In fact, because of this fundamental asymmetry between 
up/down and side/side that exists in hex pleating, there are two 
naturally different length scales that apply. When we design 
a uniaxial base using either box pleating or hex pleating, we 
must quantize the dimensions of the desired base in order to 
fit them to the required grid. For box pleating, both lengths 
and heights are quantized to the nearest multiple of the same 
unit distance. But for hex pleating, while flap lengths along 
the axis will be similarly quantized to a multiple of the basic 
unit, flap widths will be quantized to multiples of a different 
amount, which is this fundamental width unit, and which is 
only 58% of the length quantization. So in hex pleating we can 
talk about the length unit and the (smaller) width unit.
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So what if we want our flaps to be wider than the fundamen-
tal width quantization? We can, as with box pleating, introduce 
level shifters. Recall that with box pleating, the symmetric level 
shifters came in two varieties, one for each of the two angles that 
ridge creases could make with incident axis-parallel creases (45° 
and 90°). With hex pleating, there are three possible angles, and 
so there must be three different types of symmetric level shifter. 
All three are shown in Figure 14.41. 

Figure 14.41. 
Level-shifting gadgets for hex 
pleating. Each gadget shifts an 
axial contour (green) to axial+2 
(violet) for a different angle of 
incidence between the axis-
parallel creases and the initial 
ridge crease.

These are the symmetric gadgets, but there are, of course, 
asymmetric ones, as well; a few are shown in Figure 14.42. 
Note that the first asymmetric shifter follows the 30° sym-
metry of the grid, in contrast to its symmetric counterpart in 
Figure 14.41.

And, of course, there are more complex level-shifting gad-
gets that work near junctions of ridge creases.

Figure 14.42. 
Asymmetric versions of the 
level-shifting gadgets for hex 
pleating.
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The process for constructing a hex-pleated base is pretty 
much the same as that for a box-pleated base. You start with 
the stick figure, which defines the circles and rivers that 
dictate the minimum size for each hinge polygon. Then draw 
the hinge polygons and hinge rivers on the grid, making sure 
that the hinge polygons enclose their respective circles and 
that the rivers respect their constant width. 

Let’s work through another example. We’ll use the same 
stick figure (i.e., the same dimensions) as the Scarab Beetle of 
Figure 14.27. We begin with the circle packing based on the 
stick figure with circles and rivers, but now we use a hexagonal 
grid as our background, as shown in Figure 14.43.

1
1

2
3

2
3

1

Figure 14.43. 
Stick figure and packing for the 
left half of the crease pattern for 
a hex-pleated Scarab Beetle.

(Incidentally, do you see that little spur near the top of 
the river? That’s a hex-pleated version of a meander.)

Once the packing is in place, one can add the ridge creas-
es, followed by the axis-parallel contours. The ridge creases 
are the straight skeleton of each hinge polygon and the angle 
bisectors of the corners of the rivers, respectively, and are 
shown in the left subfigure of Figure 14.44.

Next come the axials. Since this is a plan view base, 
the center line of the crease pattern (which is the right side 
of each half-pattern shown in the figure) must be axial. The 
junctions of ridge creases along this line are axial points, and 
these points “seed” axial contours that propagate toward their 
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Figure 14.44. 
Left: ridge contours added. 
Right: axial contours added.

respective hinge contours perpendicularly. These contours are 
forced. One can also add additional axial contours in addition to 
the forced contours, in order to establish a constant contour spac-
ing; this will result in a constant width for all of the flaps and so a 
relatively uniform distribution of layers. The complete set of axial 
contours is shown in the right subfigure of Figure 14.44.

Next come the axial+1 contours, which we add, naturally, 
halfway between each of the axial contours, as shown in the 
left subfigure of Figure 14.45. 

This completes the basic crease pattern. This will give a 
base whose flaps are all the same width, one “width” unit—
which, recall, is only 58% of a “length” unit in hex pleating. All 
of the flaps, therefore, will be fairly narrow. The “body” flaps 
get opened down the middle, along the axial line of symmetry, 
and so will be twice as wide as the individual leg and antennae 
flaps, but this is still too narrow to make a respectable body. 
So we’ll want to widen the flaps that give rise to thorax and 
abdomen, and this we can do by inserting level shifters at the 
appropriate place, as shown on the right in Figure 14.45. This, 
then, completes the contour map of the base, which is shown 
along with the folded model in Figure 14.46.

Not too surprisingly, it looks a lot like the Scarab Beetle 
of Figure 14.27, but with a slightly narrower body relative to 
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Figure 14.45. 
Left: axial+1 contours added. 
Right: an axial+2 contour added via level shifters. The level-shifted 
contour is highlighted.

Figure 14.46. 
Contour map and folded model of the Scarab Beetle HP.
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its length. A fully crease-assigned crease pattern is shown at 
the end of the chapter.

How does hex pleating compare to box pleating? There 
are pluses and minuses. One of the pluses is purely aesthetic; 
I find hex-pleated crease patterns to be more interesting than 
box-pleated patterns. There’s enough repetitiveness and sym-
metry to make them beautiful, but there’s more variation in 
angle than in box pleating which, to be honest, can start to 
look a little boring after a while. On the downside, though, it 
is much harder to precrease a pattern that is on a hexagonal 
grid as compared to a square grid (as our origami tessellation 
friends are well aware).

In fact, there is a significant issue with hex pleating that 
I have not yet mentioned but that you will quickly discover 
once you start playing around with it. While box-pleated grids 
fit naturally onto a square, since the “length” unit and “width” 
unit of an equilateral triangular grid differ by an irrational 
multiple, there is no possibility that a hex-pleated grid can fit 
precisely onto a square with all four corners of the square on 
grid vertices.

The grid in Figure 14.46 looks pretty close, however. That 
is because there are certain “magic” combinations of grid dimen-
sions that come so close to a square that the difference can be 
ignored. The first few magic combinations* are:

Looking back at Figure 14.46, you can see that the implied 
grid is 15 units high and 13 units wide. This is not a perfect 
square, but it is extremely close; if we made the paper 13 grid 
units wide exactly and 15 grid units high exactly, then the ratio 
of height:width would be 1:1.00074; certainly there would be 
no harm in rounding it to 1:1.

The “magic” dimensions are pretty far apart, though, so 
we got lucky with this particular design. In general, if you are 
folding from a square, the square will not fit the paper exactly. 
But what you can do is scale either the height or width to fit 
the grid exactly; you will then have a little bit of excess paper 
in the other dimension that can be folded over and tucked away 
inside the model. That little bit of excess paper is not entirely 
wasted, either; a folded edge is more resistant to tearing than 
* For those of a mathematical bent, these ratios are the convergents of the 
continued fraction expansion of the width-to-height ratio of an equilateral 
triangle, 2/√3.

Height 7 15 97 209
Width 6 13 84 181

Table 14.1. 
Magic dimensions for a grid of 
equilateral triangles.
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a raw edge, and so the resulting pattern may end up being 
slightly easier to fold neatly—particularly if it is a very com-
plex and/or highly stressed pattern.

Hex pleating offers some additional benefits, too; hexa-
gons are closer to circles than squares, and so hex pleating has 
the potential to give more efficient packings than the square 
packings of box pleating. But that is only a potential, not a 
definite, rule; whether a hex-pleated packing, or a box-pleated 
packing, or box pleating plus Pythagorean stretches is more ef-
ficient will depend on the specifics of the design. I have found a 
few designs where hex pleating provides an interesting and/or 
elegant crease pattern. Hex-pleated contour maps and folded 
forms are shown in Figures 14.47 and 14.48 as two examples: 
a Cyclomatus metallifer beetle and a scorpion. 

The Cyclomatus is similar to the Cicada Nymph in that 
most of the axis-parallel folds (and layers of paper) are shifted 
to higher elevation; most contours are axial+1 and axial+2. You 
will see, though, a few axial contours—notably the ones that give 
rise to the cleft between the wing covers of the beetle. You will 
find a fully assigned crease pattern at the end of the chapter.

The Scorpion, too, uses multiple levels and numerous 
level shifters to keep the legs thin and the body wide, as you 
can see in Figure 14.48. It, too, has a fully assigned crease 
pattern at the end of the chapter.

Figure 14.47. 
Contour map, base, and folded model of a hex-pleated Cyclomatus 
metallifer beetle. 
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Figure 14.48. 
Contour map and folded model of a hex-pleated Scorpion HP.

14.8. Arbitrary Polygons
Box-pleating and hex-pleating are not the only way to employ 
polygon packing. If we are careful with our selection of polygons, 
we can use polygons whose sides run at many different angles, 
and, in fact, angles that are not integer subdivisions of a circle. 
As long as the contours along the outside of the polygon are 
evenly spaced, polygons and rivers will all mate nicely with 
one another along their edges, no matter what the angles of 
the polygons and rivers are.

Polygons on a grid insured “nice mating,” though. When 
a polygon is formed on a grid, we can draw evenly spaced 
contour lines all the way around the polygon with no hiccups 
in the spacing. For purposes of mating polygons, it’s not ter-
ribly important what goes on inside the polygon; what matters 
are the points on the outline of the polygon where quantized 
contours hit those of the adjacent polygon. If we mark these 
points on the outside of a polygon, we can be assured that two 
such polygons will mate and their contours will line up, and 
no undesirable new contours will be created.

But we don’t necessarily need a grid to force this condi-
tion. For some polygons, simply controlling the side lengths is 
sufficient. Consider, for example, a triangular hinge polygon 
with an integer number of contour lines along one side. We 
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propagate those contours into the triangle, reflect them off of 
the ridge creases, and then send them back out to either side, 
adding new contours as needed to fill out the triangle. On the 
input side, there are evenly spaced contours running from 
vertex to vertex. Is the same true on the other two “output” 
sides of the triangle?

Figure 14.49 shows the answer: it depends on the tri-
angle, and small differences in the dimensions of the triangle 
can make a big difference in the behavior of the contours. In 
the pattern on the left, the contours alternate with even spac-
ing all the way to the far vertex of the triangle. In the triangle 
on the right, which is only very slightly different, the contours 
around the outside don’t line up with each other when they 
get to the ridge creases in the interior. Or, equivalently, if we 
reflect the contours across the ridge creases, they don’t hit the 
sides at evenly spaced unit distances from the vertices.

Figure 14.49. 
Left: a “nice” triangle, with integer contours on each side. 
Right: a “not-nice” triangle: it’s not possible to continue the contours 
with even spacing all the way around the polygon. An x-ray line 
shows the original position of the left side of the triangle.
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This figure also suggests what the difference is between 
the two triangles: the side lengths of the one on the left are 
clearly an integer number of units in length. In the one on 
the right, the side lengths are not integral, and that is what 
causes the misalignment in the contour pattern.

That doesn’t mean the triangle on the right is wholly 
unusable, though. We can choose to continue the pattern on 
one side of the triangle, say, the left side; reflection off of the 
ridge creases then dictates what the contours must be on the 
right side, as shown in Figure 14.50.

So, we can complete the pattern of contours, but we lose 
two potentially desirable attributes: (1) the top vertex is no 
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longer aligned with integer-elevation contours; (2) the even 
spacing of contours is disrupted along the right side.

This may not be a problem. If the right side of the triangle 
doesn’t have to mate with anything else (for example, it lies on 
the edge of the paper), all this might be perfectly OK. But the 
important lesson is that we can, in fact, build polygon-packed 
patterns from a wide variety of triangles and have the contours 
behave themselves, so long as we choose triangles whose sides 
are integer numbers of units in length.

What about other polygons, though? Building flaps from 
triangles alone would be quite inefficient: triangles don’t pack 
circles very efficiently.

The next level up in the hierarchy of polygons is quadri-
laterals. The same question applies: what quadrilateral will 
give well-behaved, evenly spaced axis-parallel contours all the 
way around the quadrilateral?

Certainly, if we want contours to run with constant spac-
ing, evenly from vertex to vertex, all four sides must be integer 
numbers of units in length.

But there’s more to it than that. Figure 14.51 shows a 
quadrilateral whose sides are all integer lengths with axis-
parallel contours along the sides. The straight skeleton (in this 
case, the sawhorse molecule) is drawn inside. The question is: 
will the contours line up?

In general, even with integer-length sides, for an arbi-
trary quadrilateral, the contours won’t line up, as shown in 
Figure 14.52. In this case, we can get evenly spaced contours 
on three sides of the quadrilateral, but they’re misaligned on 
the fourth side.

And again, like the triangle, such a misalignment may 
be acceptable, if that fourth side is on the edge of the paper; 
the misaligned contours won’t cause any further problems. 
In general, though, we’ll have to be more selective with the 

IN

OUT

new

new

OUTFigure 14.50. 
If we continue the periodic pat-
tern along the left side, it forces 
the contours on the right, which 
creates a discontinuity in the 
contour pattern and introduces 
a new fractional-elevation con-
tour.
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Figure 14.51. 
A quadrilateral molecule with 
axis-parallel contours around 
its edges and its interior circle. 
Can we make the contours line 
up when they reflect across the 
ridge creases?

Figure 14.52. 
Three contours extended inward 
from the bottom and propagated 
across the polygon. The highlight-
ed intersection shows an out-of-
place axial contour that will force 
a fractional-width flap.

quadrilateral that we use if it is to be packed on all four sides. 
One strategy is to narrow the range to quadrilaterals with 
two right angles or, equivalently, symmetric trapezoids. An 
example of each is shown in Figure 14.53, and in these quads, 
the contours do indeed all line up the way we want.

Figure 14.53. 
Left: a quadrilateral with two adjacent right angles and all integer 
sides allows its contours to connect up neatly across the polygon. 
Right: a symmetric trapezoid works similarly.
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There is a trick, however, to using this approach: the num-
ber of quadrilaterals with integer sides is relatively few. With 
respect to Figure 14.53, we notice that the triangle in the left 
subfigure whose right side is the x-ray line is a right triangle 
that must have all three sides as integers; in other words, it 
must be a Pythagorean right triangle. (In Figure 14.53, it is a 
6–8–10 right triangle.)

We saw Pythagorean triples not too long ago: they cropped 
up as a special case when we were considering overlapping 
polygons in box pleating as a special case of a general technique 
based on the gusset molecule. Might there be a similar general 
technique here as well?

In fact, there is, and it, too, relies on the gusset molecule. 
Let’s go back to the problematic hinge polygon of Figure 14.52. 
It is clear which contours around the edges we’d like to have 
line up; they’re very close to what the original straight skeleton 
gives. We can indicate which pairs of contours should be con-
nected to one another by drawing circles between the contours 
on adjacent edges, and curves of constant width joining contours 
we’d like to match that cross the quadrilateral, as shown in 
Figure 14.54.

Figure 14.54. 
The black curves connect con-
tours that we would like to 
match up when we flatten this 
hinge polygon.

Hmmm…circles…constant-width curves—like rivers—
and forcing edges to lie on a line so that selected points on the 
edges line up. Sounds like molecules. In fact, this is precisely 
the problem created by the set of constraints that were placed 
on a quadrilateral molecule. These new circles that connect cor-
responding axial contours are exactly like the packing circles 
of a quadrilateral molecule, whose edge crossing points must 
also be aligned with one another when the polygon is flattened. 
And we already know how to solve that problem: we can achieve 
the desired alignment by constructing the gusset molecule that 
corresponds to this circle/river packing. The gusset molecule 
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can be constructed geometrically or computed, and the gusset 
molecule for Figure 14.54 is shown in Figure 14.55. And yes, 
indeed, as you can see: once we construct the gusset molecule, 
all of the contours connect properly to their counterparts on 
the other sides.

Figure 14.55. 
Filling in the hinge polygon with 
the appropriate gusset molecule 
allows all of the contours to line 
up with their counterparts on 
other sides of the hinge polygon.

So this tells us that we can, in fact, use any quadrilateral 
whatsoever as a hinge polygon; if it has integer sides, we can 
find the straight skeleton to tell us approximately how the 
contours should line up with one another, then use the gusset 
molecule to perturb the ridge creases in such a way that they 
line up exactly the way we want.

And did we have to give up anything to get this flexibil-
ity? Yes: a little bit of length. In theory, the flap made from 
this polygon should be as long as the radius of its maximum 
inscribed circle (shown in Figure 14.55). If, however, you 
measure the length of the resulting flap (it is given by the 
length of the longest axial+1 contour in the figure), you will 
see that we have given up a little bit of length. In essence, we 
have traded some of that length for uniformity of the crease 
pattern. In many cases, it is an acceptable tradeoff.

Wasn’t it a nice coincidence that the gusset molecule, 
which we use to find ridge creases inside active polygons, 
works as well to find ridge creases inside hinge polygons? It is 
indeed nice—but it’s not just a coincidence. In fact, there is a 
deep duality between the axial polygons of tree theory and the 
hinge polygons of polygon packing, and the same algorithms 
work for both in many situations. So just as the gusset mol-
ecule works to bring points along the edges into alignment for 
both axial quadrilaterals and hinge quadrilaterals, for hinge 
polygons with larger numbers of sides, the universal molecule 
algorithm will work as well, in exactly the same way.
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(Note, however, that not everything carries over. The 
universal molecule was only defined for convex axial polygons. 
Hinge polygons, though, may be nonconvex; a generalization of 
the universal molecule to nonconvex polygons is still needed.)

Ultimately, one could choose entirely irregular hinge poly-
gons and then use the universal molecule to force regularity of 
the axis-parallel creases, at the expense of some irregularity 
around the tips of the flaps. That approach is in some sense a 
dual to the use of tree theory, which insures clean, sharp tips 
of flaps but generally results in irregular axis-parallel creases 
when the base is sunk and countersunk to a constant width.

Either extreme results in a lot of irregularity. The sweet 
spot in origami design is reached by striking a balance between 
irregularity and regularity in the design, so that one can achieve 
one’s aesthetic goals in the finished model and, hopefully, create 
an interesting and efficient design along the way. 

As an example of an irregular structure that one might 
incorporate into a combination of grid-based and other polygon 
packing, I’d like to return to a structure we saw a bit earlier 
in this chapter. Both the Cicada Nymph and the Scorpion HP 
included segmented regions in their bodies. The way those seg-
ments were obtained was to create a series of short flaps spaced 
out along a longer flap—the abdomen of the Cicada Nymph 
and the body of the Scorpion, respectively. Those are special 
examples of a general concept I call a comb: a series of equal or 
nearly equal filaments spaced out along a longer shaft. 

In a circle-packed or polygon-packed representation, a 
comb consists of a series of rivers that spread apart to have 
circles inserted between them. Those circles constitute the se-
ries of filaments; the bundle of rivers gives the gaps between 
each filament along the shaft, as illustrated in Figure 14.56.

It’s pretty clear that this pattern could be extended arbi-
trarily for larger numbers of filaments. It’s also clear that by 
varying the sizes of the circles while keeping the river widths 
fixed (or vice versa), we could alter the ratio between the fila-
ment length and the gaps between filaments. Larger circles 
mean longer filaments; narrower rivers mean smaller gaps.

What is less obvious from this example is that we can in-
dependently vary the angle that the rivers bend as they turn 
around the circles. You can see that from the two appearances 
of this concept in the crease patterns of the Cicada Nymph and 
Scorpion HP; in the Cicada, the rivers turn at right angles (as 
in the above); in the Scorpion, they bend at 60°.

In fact, one can choose the bend angle arbitrarily, and that 
allows for another degree of design freedom. In the Cicada and 
Scorpion HP, I used this structure to realize a segmented body; 
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comb
boundary

the “filaments” were, in fact, squared-off flaps, much wider 
than their lengths. But we could also use this technique to 
make sharp-pointed filaments. To minimize the paper going 
into each filament, we would likely want to orient the boundary 
line of the comb along the edge of the paper. (Although this 
certainly isn’t necessary; one could use this technique to create 
rows of middle flaps, and indeed, you can see something very 
much like this in the Centipede and Pill Bug of Chapter 8.)

Now we can start thinking about the positioning of the 
axial contours. If all of the filaments lie at the same elevation, 
then we’d want them all to have axial contours emanating from 
them, heading off somewhere into the interior of the paper. 
And we’d need some type of off-axis contour (say, axial+1) 
spaced evenly between those axial contours. In order to avoid 
additional bouncing of those contours, we’d want the axial+1 
contours to terminate on the junctions between adjacent ridge 
creases. This leads to the geometry shown in Figure 14.57.

The entire pattern is tilted with respect to the paper edge 
by an angle , which can be continuously varied. This angle 
affects the filament-to-gap ratio; if we define this ratio as f, 
i.e., f ≡ l/g, then you can show that

             ,  (14–16)

Figure 14.56. 
Circle and hinge river packing 
for a comb. The stick figure for 
the comb is shown at the bottom. 
The x-ray line through the circle 
centers defines the left boundary 
of the minimum paper needed to 
realize both the main shaft and 
the filaments of the comb.

f =
1
2

cscα − 1( )

comb
boundary
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or equivalently,

           .  (14–17)

Thus, you can create any aspect ratio comb by suitable 
choice of the tilt angle: choose your comb ratio f, then use 
Equation (14–17) to solve for the tilt angle . By small adjust-
ments of the tilt angle and filament length, you can get the 
axial contour spacing to match up with an integral multiple of 
the unit width for the rest of the crease pattern, and you can 
use the triangular or quadrilateral polygons from this section 
to match up this tilted structure with a more conventionally 
designed portion of the crease pattern.

Two examples that incorporate this comb idiom are shown 
in Figures 14.58 and 14.59. The Euthysanius Beetle has long, 
feathery antennae, in addition to the usual complement of legs 
and body parts. We can set up a comb for each of the anten-
nae across the top of the paper, then use a triangle to join the 
angled contours to a regular box-pleated structure for the rest 
of the figure.

The Spur-Legged Dung Beetle incorporates six such combs, 
one on each leg. Again, we can use triangular hinge polygons to 
join the angled axis-parallel contours to a regular box-pleated 
structure for the rest of the form.

l
g

α

Figure 14.57. 
Geometry of a comb aligned to 
the edge of the paper. The axial 
contours (and thus the hinge 
lines) are tilted with respect to 
the paper edge at an angle . 
The filament length is l; the gap 
length is g. The corresponding 
stick figure is shown at the top.

α = sin−1 1
1+ 2 f
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Figure 14.58. 
Contour map and folded model of the Euthysanius Beetle. 

Figure 14.59. 
Contour map, base, and folded model of the Spur-Legged Dung 
Beetle. 
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Fully assigned crease patterns for both figures are given 
at the end of the chapter.

These designs combine multiple techniques and ideas. 
The best design for the subject may not be—usually is not—an 
example of a “pure” technique. That’s quite all right, though; 
there is nothing sacred about box pleating or hex pleating, and 
no need for a design to be purely one, purely the other, a mixture 
of both with arbitrary polygons, or a mixture of various ideas 
and techniques. In fact, I find that most of my origami designs 
tend to call upon a mixture of concepts, in keeping with my 
philosophy that design ideas are merely tools—the equivalent 
of brushes and pigments for a painter, or differently shaped 
chisels for a woodcarver. The tool itself is unimportant; what 
matters is what you do with the tool.

14.9. Collapsing Crease Patterns
Throughout this book, there has been an idea implicit in my 
presentation that in some sense the problem is “done” once we 
have the crease pattern. Of course, that’s not remotely the case. 
The crease pattern describes the plan for the base, but turning 
a base into a finished work can be a long and demanding task. 
It can, in fact, require far more effort, and certainly more art-
istry, to turn a base into the finished work than was required 
for the folding of the crease pattern into the base.

But even turning the crease pattern into a folded base can 
still be very, very difficult. Historically, origami was conveyed 
by step-by-step diagrams that communicated a linear folding 
sequence from paper to base (and on to finished model). To 
origami artists whose folding experience was built up from 
step-by-step diagrams, there arose a presumption that some 
linear folding sequence exists for every origami model, includ-
ing those described by crease patterns.

That is, alas, a false presumption for many origami 
designs. In the grand space of all possible origami designs, 
only the tiniest fraction possess simple step-by-step folding 
sequences. The reason that almost all origami models his-
torically had linear sequences is that they were discovered 
by artists who were following only linear sequences to create 
their works.

Even as far back as the 1950s and 1960s, though, there 
were origami artists who used a design approach that led 
directly to the finished form. We see this in the notebooks of 
Elias, who designed and recorded many of his works as crease 
patterns. Crease patterns tell you where you need to eventually 
be, but they don’t tell you how to get there, or even if there is 
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a simple route, and in general, there may be no easy way to 
get to the destination: no linear sequence of small, bite-sized 
folds.

We can see this phenomenon in the circuitous twists and 
turns of axis-parallel contours and creases. If the paper were 
truly rigid, then any given axis-parallel crease would need to 
be folded uniformly along its length, all at once. And this is 
almost never possible without some distortion of the rest of 
the paper. In such patterns, all of the fold angles are coupled 
to one another in such a complex way that they cannot be 
separated; no one fold can be formed without affecting the 
others. The design cannot be reduced to a linear sequence; it 
exhibits irreducible complexity (in the origami sense).

So, how do you fold a design, given its crease pattern? 
You must bring most or all of the creases together at once, 
activating tens, or hundreds, of creases together. The key to 
success to such a complex endeavor is to recognize the hier-
archical structure of the crease pattern and the additional 
information that attaches to each crease: its type and eleva-
tion. Individual creases are not just “mountain” or “valley”; 
they have an identity that tells you where they must end up 
in the finished model. Thus, you know that all of the axial 
creases are going to end up collinear with one another along 
the axis; all of the axis+1 creases will be aligned with one an-
other on one side or the other of the axis. The hinge creases 
are perpendicular to the axis in the folded form; the ridge 
creases run along diagonals. Using this information, you can 
keep the “big picture” of the base in mind as you collapse the 
crease pattern into its finished form, guiding each crease to-
ward its end location, and discovering a valid layer ordering 
(one hopes) as the base approaches flatness.

Most crease patterns, of course, do not tell you this ad-
ditional structural information. They only identify the crease 
as mountain or valley (and some don’t even do that much). 
When presented with a crease pattern, you can give yourself 
a leg up by first examining it to see if there is some high-level 
structure. Is it uniaxial, or are regions of it uniaxial? If you 
can identify uniaxial regions, then you can trace the contours 
and identify hinge polygons, ridge creases, and axis-parallel 
contours. Armed with that knowledge, you can then more eas-
ily perform the collapse, because you will now have a map that 
tells you at least in general terms where you are headed.

For the models presented in this chapter, there are no 
simple, linear folding sequences. There are only crease pat-
terns and collapses. But to give you a little extra help, I have 
used a dual coloring scheme for the following crease patterns to 
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convey both mountain/valley/crease status by the line pattern, 
and axis-parallel/ridge/hinge status by the color. Using both 
layers of information, you should be able to collapse the crease 
pattern into the base shown in the figure within the chapter, 
and then from there, add shaping folds to create the finished 
form shown in the photograph. I encourage you to work through 
all of the examples. Once you’ve succeeded in folding all of 
these bases, you’ll be well armed to take on the many complex 
crease patterns in the origami literature—crease-assigned or 
not—and, most importantly, to design your own works.
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Crease Patterns

Flying Walking Stick

Chapter 14: Crease Patterns

Salt Creek Tiger Beetle

Longhorn Beetle

Camel Spider

Water Strider
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Crease Patterns

Scarab Beetle

Cicada Nymph

Scarab Beetle HP

Cyclomatus metallifer

Scorpion HP
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Crease Patterns

Euthysanius Beetle

Spur-Legged Dung Beetle

Chapter 14: Crease Patterns
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Flying Walking Stick

Mark the edges of a 74×74 square grid. Use the edge
markings to locate the interior vertices. All axis-
parallel creases are either axial or axial+1, but the
middle points (that form the wing covers) make the
collapse a bit challenging.
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Salt Creek Tiger 
Beetle

Mark the edges of a 24×24 square grid; then use the
edge markings to locate the interior vertices. The two
flaps that form the jaws are middle points, and so
will be a bit more of a challenge to collapse. You
should precrease the angled creases near the tips of
several points before the collapse for the best precision.
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Longhorn Beetle

Mark the edges of a 24x24 square grid. Use the edge
markings to locate interior vertices. Note the use of
level shifters to selectively widen regions of the body.
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Camel Spider

Mark the edges of a 58x58 square grid. Use the edge
markings to locate interior vertices. The corners of
the Pythagorean stretches are located roughly halfway
between grid lines.

Crease Patterns: Camel Spider
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Water Strider

Mark the edges of a 36x36 square grid. Use the edge
markings to locate interior vertices. You don’t need
to pre-crease the folds outside of the perfect
Pythagorean stretches; just fold the corners underneath
after precreasing the rest.
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Scarab Beetle

Mark the edges of a 22×22 square grid. Use the edge
markings to locate interior vertices. You can estimate
the position of the axial+1 creases that run along the
hypotenuse of the extended Pythagorean stretch from
where they hit the edge relative to the edge markings.
The creases in the middle are used in the shaping of
the body.

Crease Patterns: Scarab Beetle
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Cicada Nymph

Mark the edges of a 19×19 square grid; then use the
edge markings to locate interior vertices. Note that
here the “axial” contours are not located on the center
line; this gives the base one extra unit of width. The
extra creases near the top should be precreased before
the collapse.
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Scarab Beetle HP

Divide the vertical edges in 13ths and the horizontal
edges in 15ths; these serve as the references for the
primary grid, which is based on equilateral triangles.

Crease Patterns: Scarab Beetle HP
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Cyclomatus metallifer

Divide the top edge into 50ths and then mark the odd-
numbered divisions. Use these marks as the basis of
a 30° grid, working from the top downward; the
bottom of the paper won’t line up with the grid. Then
use these marks as references to precrease the folds.
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Scorpion HP

Divide the side edges into 58 equal divisions. Then,
starting from the middle, measure off 24 divisions in
each direction, each horizontal division 1.155× larger
than the vertical divisions. There will be a little paper
left over at each edge; this gets folded inside. Use the
divisions as the basis of a 30° grid for the creases.

Crease Patterns: Scorpion HP
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Euthysanius Beetle

Mark the edges of a 76×76 square grid. Use the edge
markings to locate interior vertices. Note that the
antenna folds at the top are not aligned to the grid;
instead, the lines are tilted at a slope of 1:8. You
should precrease the extra creases shown in the middle
before collapsing the base.
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Spur-Legged Dung
Beetle

Mark the edges of a 76×76 square grid. Use the edge
markings to locate interior vertices. Note that the
antenna folds at the top are not aligned to the grid;
instead, the lines are tilted at a slope of 1:8. You
should precrease the extra creases shown in the middle
before collapsing the base.

Crease Patterns: Spur-Legged Dung Beetle
© 2012 by Taylor & Francis Group, LLC
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15
ox pleating is a specialization of the circle/river 
method of flap generation and uniaxial bases, 
but as we saw in Chapter 12, it is also a way of 
extending them; it allows one to easily combine 
two-dimensional flaps and three-dimensional 

objects in the same model. It also illustrates a general principle 
of origami design: that one can mix and match different styles 
and techniques in the same model, using particular design ele-
ments where they are needed. Many—perhaps most—origami 
designs are of this hybrid type. Circle packing, box pleating, 
hex pleating, and polygon packing techniques are powerful, 
but focusing solely on flap generation can be limiting; there are 
only so many subjects out there with 23 pairs of appendages. 
Nearly all of the techniques I’ve shown so far are based on the 
concept of a uniaxial base, but there are many potential origami 
subjects that do not fit into the stick-figure abstraction that is 
part and parcel of the uniaxial base.

When faced with a subject that does not fit into the uniaxial 
mold, rather than starting over from scratch, one can often 
adapt elements of uniaxial bases and combine them with other 
folding techniques to form a hybrid base, one that provides 
both a better representation of the chosen subject and a more 
visually interesting physical structure.

The question then arises: In a hybrid structure, for what 
should we use packing methods? All of these techniques are good 
for generating flaps, particularly long, skinny ones. A subject 
that is composed primarily of long, skinny appendages is a per-
fect candidate for a pure circle/river- or polygon-packed  design. 
But then the counter-question also arises: For what should 
we NOT use packing? And the answer is, anything that isn’t 
approximated reasonably well by a stick figure. Most notably, 

Hybrid Bases
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large, flat regions are not usually produced by a circle- or 
polygon-packed base, because the process of maximizing the 
length of a flap often minimizes its width. Additionally, large, 
bulbous, three-dimensional shapes do not typically arise from 
circle packing, first because uniaxial bases lie flat by design, 
and second because (again) the process of optimizing the length 
of flaps tends to cut down on their width. With subjects that 
have large, two-dimensional expanses of surface, other tech-
niques must be employed. Attempting to design such a subject 
using packing is akin to using a pair of pliers to pound nails: it 
can be done, but the results are often unsatisfactory.

However, packing can have a place in such a design, if 
you use it when it’s appropriate. In a design that combines 
large, flat expanses with many narrow flaps, you can allocate 
polygons of paper for the flat regions and then tie them all 
together with regions of circle or polygon packing to generate 
the required flaps.

15.1. Flats and Flaps
Here is an example of this hybrid approach. While circle packing 
is ideal for the design of insects and other arthropods (as you 
might expect from the many arthropodic examples I’ve shown), 
it does not work particularly well for a butterfly or moth. In the 
members of the order Lepidoptera, the wings are the dominant 
structure in the model; indeed, for many years, the only origami 
butterflies consisted of wings only, plus, perhaps, a few crimps 
and/or blunt points to suggest a body. Legs and antennae were 
not even considered.

As the new geometric design techniques were discovered 
during the early 1980s, however, several folders cast their eye 
on the butterfly for its unique challenge: how to create large 
wings, plus small body, legs, and antennae (and, in some cases, 
even faceted eyes and proboscis!). Artist and architect Peter 
Engel devised the first (and still perhaps the best in terms of 
its usage of the paper); by the end of the 20th century, several 
other folders, including myself, had followed in his path.

The problem of combining large flat wings with small legs 
and features provides a nice challenge. Both butterflies and 
moths have four large wings, but since the fore and hind wings 
inevitably overlap, one always has the choice of representing 
the pair by one or two distinct panels of paper.

The observation that all four of a butterfly’s wings are 
roughly triangular suggests one approach: Create each wing 
flap from a folded-in-half square region, as shown in Figure 15.1. 
We will allocate four such squares (one for each wing) at each 
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of the four corners of the square as in Figure 15.2. The rest of 
the paper between the four wing flaps is then available to create 
head, thorax, abdomen, antennae, and legs.

Figure 15.1. 
The four wings of a butterfly are roughly triangular; each can be 
folded from a square region of paper.

Figure 15.2. 
The four wings can be obtained 
by placing the four wing-squares 
in the four corners of the pa-
per.

wing wing

wing wing

unassigned

Now, having assigned the four corner regions to become 
wings, what to do with the rest of the paper? We will need 
flaps, of course; but just as important, we need gaps. The four 
triangular wings of a butterfly are joined to each other only at 

© 2012 by Taylor & Francis Group, LLC



702 Origami Design Secrets, Second Edition

the corners nearest the body; therefore, we need to introduce 
gaps between the left and right wings (and, if we want separate 
fore and aft wings, between those pairs as well).

We saw how to introduce gaps back when we were split-
ting points in Chapter 6; we added a strip graft between the 
regions that needed a gap. The width of the strip was twice the 
depth of the gap. We can do that here using the unassigned 
paper for the graft. In Figure 15.3, I’ve added diagonal creases 
that delineate the gap. I’ve also added half-circles, which do 
the same. A gap can be considered to be two half-flaps, joined 
at their base; consequently, we can use portions of circles (and 
portions of molecular crease patterns) to construct the gaps as 
well as the flaps.

Figure 15.3. 
Between adjacent pairs of wings 
we introduce gaps (pairs of half-
points). The paper required for 
the gaps is indicated by the half 
circles.

wing wing

wing wing

unassigned

gap

In this model, I’ve made the gaps two-thirds of the length 
of the side of the wing triangles. It’s possible, of course, to ex-
tend the gaps all the way to the tips of the wing triangles, but 
if I extend it only partway, then I can use the corners of the 
wing triangles in a different way, as four points of the cluster 
of points forming body, legs, and antennae.

The head, legs, and abdomen all emanate from the same 
point. To a reasonable approximation, the antennae can also be 
treated as emanating from the same location, which means that 
all ten flaps—two antennae, six legs, abdomen and head—can 
be represented by a simple circle packing. We will now require 
that the circles not just fit into the square, but that they not 
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intrude into the wing regions—at least, not beyond the circles 
that delineate the gaps.

A bit of manipulation reveals that nine circles fit neatly 
into the space available, as shown in Figure 15.4. Unfortunate-
ly, that’s one circle too few. The obvious next step is to reduce 
the circles and rearrange them to add a tenth circle. But the 
nine-circle packing is so elegant, it would be nice to find a way 
to make use of it. Rather than rearranging, we can jettison 
one flap; a separate flap for the head isn’t really needed if we 
use the presence of the two antennae flaps to suggest a head. 
This means that a final packing of circles for the appendages 
and the square facets for the wings can be solidified as shown 
in Figure 15.4.

Figure 15.4. 
Circle packing for a butterfly 
with flat regions allocated for 
the wings.

In this packing, all of the axial creases are orthogonal, 
which suggests that a box-pleated crease pattern is possible, 
and indeed it is. We have a choice of how many divisions to 
use in the box-pleated sections. In the published version of this 
model, I chose to use 12, as shown in Figure 15.5 in the crease 
pattern, base, and folded model.

The same packing and arrangement of flaps can also be 
folded using more divisions, which give narrower flaps. You 
might enjoy the challenge of working out what the crease pat-
tern (and folded result) would be using 20 divisions, rather 
than 12, in the box-pleated portion.

Note that our nine flaps would ideally come in the form of 
four symmetric pairs of flaps for legs and antennae, plus a single 
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flap on the line of symmetry for the thorax. In this pattern, three 
of the flaps fall on the line of symmetry, which means that two 
of them have to be manipulated to lie side-by-side in the folded 
model. Fortunately, the layers allow this rearrangement.

In retrospect, creating four separate flaps for the wings was 
probably representational overkill. The hazard of attempting 
to create too much in the way of appendages is that inevitably, 
some other aspect of the model is compromised. It does no good 
artistically to get the point count correct if the result is mis-
shapen, clunky, or lifeless. In subsequent butterfly designs, I 
have gone back to representing both fore and aft wings by a 
single flap. Even with that simplification, the case can still be 
argued that adding legs is an aesthetic mistake. Because they 
are almost never as thin as a real butterfly’s legs (which are 
almost impossible to see without an extreme close-up or still 
photo), explicitly created legs are frequently more of a distrac-
tion than an enhancement to the model. But perhaps this is 
not an inherent limitation of the subject, merely a statement 
that an accurately representational, yet artistically graceful, 
butterfly origami figure has yet to be designed. Perhaps by ap-
plying some of the techniques I’ve outlined here, yours could 
be the first.

Yet another example of allocating extra paper to widen 
flaps is illustrated in the Dragonfly design in Figure 15.6. The 
construction of the abdomen and legs is classic circle packing. 

Figure 15.5. 
Crease pattern, base, and folded model of the Butterfly.
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However, by adding a rectangular segment into the middle of 
each of the four wing flaps, we create extra paper that allows 
a uniform width to the wings along their length. Can you find 
the added paper in the crease pattern?

Figure 15.6. 
Crease pattern, base, and folded model of the Dragonfly.

15.2. Multiaxial Bases
One of the biggest mismatches between technique and subject 
that arises in the use of uniaxial bases is that multiflapped bases 
tend to be skinny, while many subjects have parts that are thick 
and chunky. In particular, many animals have relatively stout 
bodies and hindquarters relative to their limbs: mice and squir-
rels, hippos and elephants. A purely uniaxial base, while possess-
ing flaps for all of the major appendages, may not provide enough 
width in the flaps that are used for the body. Furthermore, the 
very efficiency that makes circle-packed bases so desirable usu-
ally means that there isn’t much, if any, excess paper available 
to pull out to widen the desired flap.

Another problem is a bit more subtle. If we create an ani-
mal subject from a uniaxial base that is represented in side view 
as opposed to plan view, we will typically fold the leg flaps out 
to the sides, then fold the model in half, as, for example, was 
done with the Bull Moose in the previous chapter.

When we fold a uniaxial base in half, the fold line occurs 
on the axis of the base, and this naturally becomes the back 
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of the animal. The leg flaps extend downward from the axis, 
as in Figure 15.7. This means that the legs need to traverse 
the entire height of the body before they extend beyond it, 
and the portion of the flap that extends beyond the body is 
shorter than the original flap. In effect, a portion of the hard-
won flap length gets used up inside the body, where it serves 
no useful purpose.

Figure 15.7. 
Folding sequence for a basic animal from a Frog Base. Since the 
axis runs down the spine, portions of the leg length are lost inside 
the model.

1. Start with a Frog Base.
Reverse-fold the near pair
of points up and outward.

2. Reverse-fold the
remaining two flaps out to
the sides.

3. Mountain-fold the
model in half and rotate
1/4 turn clockwise.

4. Finished basic animal
form. Note how much of
the leg flap is lost inside
the model.

1/4

The wider the body region, the greater the fraction of 
the leg flaps that gets consumed. Obviously, we could reduce 
the waste by narrowing the body, but if we need a particu-
lar body width, that option is not available. To compensate,  
the leg flaps must be lengthened in the original design,  
which ends up reducing the relative size of everything else, 
and making the overall model less efficient than it needs  
to be.

Ideally, the leg flaps wouldn’t emanate from the spine of 
the subject. This goal can be realized in several ways, by reor-
ganizing the model so that the axis is no longer along the spine, 
or by moving away from uniaxial bases entirely. Several artists, 
notably John Montroll, have over the past few decades devised 
numerous clever alternatives to uniaxial bases that sidestep 
this problem with remarkable efficiency. One approach used 
by many artists is a natural outgrowth of two of the concepts I 
have described in this book, grafting and uniaxial bases. As we 
did with the Butterfly example, we combine portions of uniaxial 
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bases with folded structures that provide the portions of the 
subject that don’t fit neatly into the uniaxial mold.

In the case of a vertebrate animal, we can create a large flat 
polygon for the wide body of the animal and pack pieces of uni-
axial bases around it to create flaps for the appendages; instead 
of distributing those flaps along the centerline of the polygon as 
in a uniaxial base, we can distribute them around the periphery, 
thus reducing or eliminating the wide-body penalty.

The simplest way of accomplishing this would be to cut the 
base along some axial creases and insert a strip graft, as we 
did in Chapter 6, but instead of pleating the strip and turning 
it into more points, we leave it relatively unfolded. Figure 15.8 
illustrates the surgical process performed on the Frog Base of 
Figure 15.7.

Figure 15.8. 
Construction of a multiaxial base.

1. Here is the crease pattern
for a Frog Base. We cut it
down the center …

2. … and insert a strip,
bounded on both sides by
two axes.

3. Construct a modified
Frog Base (using circle-
river packing) in the paper
remaining outside the strip.

4. Extend creases across
the strip and fold it into a
base.

5. The resulting base is no
longer uniaxial.
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By inserting the strip, we have created two axes within 
the base; it is now multiaxial. By using the inserted strip for 
the body, we can utilize nearly the full length of the leg flaps by 
narrowing the uniaxial portions, while the central strip retains 
its full width, as shown in Figure 15.9.

Figure 15.9. 
Narrowing the edges that would conceal the leg flaps still leaves paper 
available for a wide body.

6. Sink the edges in and out
to narrow them.

7. Reverse-fold the flaps
 out to the sides.

8. Observe that very little
of the horizontal flap is now
hidden inside the model.

The example in Figure 15.9 is a bit contrived to illustrate 
the principle. But you can use this technique in many ways, 
varying the width of the inserted strip relative to the paper 
remaining to vary the ratio of body width to flap length while 
still preserving efficiency.

15.3. Grafted Kite Base
The region that you insert does not have to be a rectangular 
strip, of course. Far from it: One of the most versatile techniques 
for creating animal forms, used in designs by numerous artists, 
inserts a Kite Base (or modification thereof) into the corner of 
a square. Or, viewed another way, it consists of a strip graft 
added to two sides of a Kite Base, similar to the strip graft that 
created the KNL Dragon in Chapter 6. But now, rather than 
simply using the strip to create small features at the corners 
of the model, the strip is made wide enough that, when filled 
with flap-creating molecules, it contributes a collection of flaps 
around the periphery of the triangle that makes up the silhou-
ette of the Kite Base. This added material thereby produces 
much of the overall structure of the model. Better yet, it is 
highly variable: By varying the width of the grafted strip, you 
can add more or fewer flaps, make them larger or smaller, and 
create a remarkable variety of flat and three-dimensional fauna. 
I call the family of structures the grafted Kite Base.
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The concept of the grafted Kite Base is illustrated in Fig-
ure 15.10. The basic structural form is the Kite Base, whose 
crease pattern is embedded in the square. The central triangle 
of the Kite Base will be preserved in the final model, giving 
a large, flat region from which to form the body. Instead of 
running the axis of the model down the center of the square, 
we can treat the perimeter of the preserved triangle as con-
sisting of axis; we then use conventional techniques, such as 
circle/river packing, to create flaps from the region outside 
the preserved triangle.

Figure 15.10. 
Left: Kite Base. 
Middle: crease pattern for the Kite Base. 
Right: Kite Base embedded within a larger square.

added paper

Not all of the theory carries over; the molecular crease 
patterns we constructed were based on the assumption that all 
axial creases wind up collinear in the folded model. This will 
assuredly not be the case if we keep the colored triangle from 
folding flat. However, we can still use circles to allocate paper 
to the flaps that will lie along the creases.

We can also incorporate portions of the colored triangles 
into flaps, by allowing our circles to partially overlap the tri-
angle; however, these flaps will not be axial flaps. That may 
not be a problem; in fact, it may be quite desirable. Thus, for 
example, in the Rabbit shown in Figure 15.11, the two bottom 
corners of the embedded triangle become the rear legs of the 
animal. Obviously, they are not axial flaps, but for this figure, 
axial flaps would not be very useful as the rear legs. On the 
other hand, axial flaps work very well for the head and ears, and 
the four-circle-packing—and the crease pattern that results—
should, by now, be very familiar to you.

The ratio between the size of the embedded Kite Base and 
the original square is a design variable that changes continuously 
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Figure 15.12. 
Three different ratio embeddings of the grafted Kite Base.

A

B

C

A

B

C

A

B

C

(which is why the grafted Kite Base is a family of bases, rather 
than a single base). The smaller the Kite Base is, relative to the 
full square, the more paper is available for other flaps. Thus, in 
Figure 15.12, where I have drawn three different sizes, you can 
see that in the image on the left, the four circles at the top of 
the square (and thus their corresponding flaps in the base) are 
relatively small compared to the lower flaps; compare circles A, 
B, and C in Figure 15.12. Reducing the Kite Base relative to the 
larger square allows the four type A flaps to enlarge, as you can 
see in the progression in the figure.

Figure 15.11. 
Crease pattern, base, and folded model of the Rabbit.
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What is less obvious but also a consideration is the length 
of the gap between circle pairs A–B and B–C. In the first two 
patterns, the B–C circles are touching, indicating that their 
corresponding flaps are joined at their base. Conversely, in the 
last pattern, circles A and B are touching with a gap between 
B and C, which means that flaps A and B are joined at their 
base. By adjusting the size of the Kite Base embedded within 
the square and manipulating the circles that allocate paper for 
flaps, you can adjust not only the length of the flaps, but also 
their topology.

You can also graft other shapes into squares in a similar 
way. The design shown in Figure 15.13, for example, grafts the 
diamond of a Fish Base into a square.

Figure 15.13. 
Crease pattern, base, and folded model of a Mouse.

In all of the grafted Kite Base examples, the top point of the 
Kite Base becomes a relatively thick middle flap. In the previous 
two models, this middle flap ends up unused, sunken down into 
the model. But it would also be possible to use it for features, 
for example, by point-splitting, as we will see shortly.

One of the things you should always do when you learn a 
new technique is to ask: How can this be generalized? In the 
grafted Kite Base, an obvious generalization is to vary the size 
of the Kite Base relative to that of the bounding square. Another 
generalization, perhaps less obvious, but equally powerful, is 
to vary the apex angle of the Kite Base. Different angles give a 
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different aspect ratio to the embedded triangle. Perhaps more 
interesting, other angles allow crease patterns with different 
symmetries. You might find it interesting to explore the pos-
sibilities of some of these other angles; an apex angle of 60°, in 
particular, offers several fruitful possibilities.

15.4. Mixing and Matching
Throughout this book, I have chosen examples that were pure 
illustrations of the various mathematical design techniques. 
The real world of design, however, is rarely so pure. More of-
ten than not, an origami design is best served by employing a 
mixture of techniques: box pleating here, circle packing there, 
grafting, molecules, point-splitting, pleated textures—and oth-
ers beyond the ones shown here.

The various design techniques are, at the end, tools; and 
just as a painter may use an assortment of brushes and pig-
ments to realize his design, the origami artist can employ a 
variety of design techniques within the same model to realize 
a single unified vision of the subject.

This last design brings together several of the design 
techniques I have shown. As in the Rabbit and Mouse in this 
chapter, I use the grafted Kite Base to embed a large triangle 
into the crease pattern, from which the massive hindquarters 
come; I employ point splitting to turn the large middle flap into 

Figure 15.14. 
Crease pattern, base, and folded model of the African Elephant.
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a forehead and flapping ears; I use circle packing to specify 
the creases in the forelegs, trunk, and elsewhere; and even 
hearkening back to the first designs in the book, I make use of 
the various elephant head designs from Chapter 2. The result 
is, of course, yet another elephant. From the simplest to the 
complex, the African Elephant spans the spectrum of origami 
technique, and serves as a fitting final example for our foray 
into origami design.

15.5. Wrapping It Up
During the great westward migration of mid-19th century 
America, a saying arose among the pioneers who were setting 
out on the Oregon Trail: “I am going to see the elephant.” The 
elephant was a metaphor for all of their goals, their hopes, their 
dreams, their aspirations. They did not set out unequipped; 
they brought with them the tools with which to make a new 
life, break new ground, and with luck, make their fortune.

Despite its antiquity, the art of origami is still in its pio-
neering days. The practice of new creation began within the last 
century, via the works of Yoshizawa, Uchiyama, and Unamuno, 
then spread around the world in its own westward expansion. 
It was led by names that have become legendary in origami: 
Oppenheimer, Harbin, Randlett, Solorzano Sagredo, Montoya, 
Rohm, Elias, Crawford, Cerceda, and others too numerous to 
mention. The early pioneers of origami creation had little more 
than a handful of traditional designs and their own intuition 
to guide them. But as the art and the knowledge spread, a col-
lection of lore and technique has arisen, akin to the blazing of 
the westward trails.

What I have attempted to provide in this book is a collec-
tion of tools to help you on your way down the path of origami 
design. These tools, like any others, are only useful with the 
knowledge of how to wield them. And they become more useful 
with practice. You can apply the concepts I’ve shown by decon-
structing the things you see. If you fold a clever or appealing 
model, pull it apart, examine the crease pattern, look for signs 
of structure. What paper goes into the flaps? Is there an axis? 
Are there multiple axes? Are some creases more important 
than others?

Just as tools become more useful with practice, as they 
become more widely used, they get improved, extended, and 
even replaced. I have no doubts that the mathematical methods 
of origami design that once seemed strangely foreign—splitting, 
grafting, tiles, circles, rivers, square packing and trees—will 
eventually be augmented, if not superseded, by more powerful 
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and more general techniques. We now look upon the origami 
designers of the 1950s and 1960s as the pioneers, but we may 
find in the future that the entire 20th century is seen as the 
era of origami pioneers as new and wondrous creations arise 
through the use of these new techniques.

While the early American pioneers blazed the trails 
through their new land, the next wave turned the rough trails  
into roads using better equipment and the knowledge of what 
was possible. Each wave of origami designers takes the art to 
new heights, creating not just more complex structures, but 
utilizing the inherent capabilities of the folded paper in new 
and unexpected ways. In this work, I have focused on a fairly 
narrow set of concepts, tied together by the common theme 
of obtaining a base with a specified configuration of flaps in 
a controlled way. But new designs go far beyond this narrow 
concept; some—such as the intricate geometric patterns of 
Chris Palmer, the curved and swirling masks of Eric Joisel, 
and the organic crumpled forms of Vincent Floderer—redefine 
the boundaries of origami itself.

Each journey into origami design is personal and original. 
It is my hope that the mathematical ideas in this book—the 
tools, geometry, structures, and equations—will help you on 
your own journey into design. At the very least, they perhaps 
offer a new way to look at origami, a way of looking beyond 
the final appearance, beyond the linear folding sequence, to 
understand the structure, its constituent elements, the build-
ing blocks of folding.

To the California Forty-Niners, “seeing the elephant” 
was their grand, glorious goal. Those who were ill-equipped or 
unlucky were turned back, saying that they had seen no more 
than the elephant’s tracks or tail. On your origami journey, 
the tools of systematic design can equip you to overcome the 
challenges posed by any origami subject and bring you success 
in your own quest to see the elephant.
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Folding Instructions

African Elephant
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African Elephant

1. Begin with a square, colored side
up. Fold and unfold along one
diagonal.

2. Fold the top corner to the bottom
and unfold, making a small pinch
along the left side.

3. Make a fold that connects the lower
right corner with the pinch you just
made; make the crease sharp where
it crosses the diagonal and unfold.
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4. Fold the top right point down
to touch the crease intersection.

5. Turn the paper over and rotate
it 1/8 turn.

1/8

6. Fold the top edges down to meet
along the centerline of the paper.

7. Wrap the corner of the paper
from back to front and flatten
symmetrically.

8. Fold the raw edges in to
lie along the center line and
unfold.

9. Fold and unfold
through a single layer.

10. Fold and unfold through
all layers.

11. Repeat on the left. 12. Fold and unfold.

13. Sink the corner on the
creases you just made.

14. Open-sink the two
edges on existing creases.

15. Open-sink the two far
edges in the same way.
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16. Reverse-fold the
edges underneath.

17. Reverse-fold the next set
of edges in the same way.

18. Fold and unfold
through the near layers.

19. Open-sink the corners. 20. Open-sink the next pair
of edges in the same way.

21. Turn the model over.

22. Squash-fold the double-
edge, pushing up from inside
and flattening symmetrically.

23. Tuck the small
white corner up
inside.

24. Fold one flap
back to the left.

25. Repeat steps
22–24 on the right.

22–24

26. Fold and unfold
along angle bisectors.

27. Fold and unfold
along four more angle
bisectors.

28. Turn the paper
over.

29. Fold the bottom
point up over all the
layers.
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30. Bring three layers in
front of the triangular
flap.

31. Fold the raw edges up
along a crease aligned with
the hidden raw edges.

32. Fold down the side
corners.

33. Bring two white
flaps in front of the
colored triangle.

34. Reverse-fold the two
white flaps up along creases
aligned with raw and folded
edges.

35. Reverse-fold the two
corners.

36. Fold the corner down.
Look at the next step for the
precise reference point.

39. Fold the corner down
along a crease that runs
through the indicated crease
intersection.

37. The hidden crease (visible
on the back side) hits the edge
halfway between two crease
intersections.

38. Unfold.

40. Swivel-fold, using the
existing creases.

41. Swivel-fold again. The
vertical crease already exists.

42. Swivel-fold one final time.
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43. Repeat steps 40–42 on the right.

40–42

44. Fold the top behind and
swing the three flaps in front
as far upward as they will go.

45. Turn the model over from
top to bottom.

46. Steps 47–60 will focus
on the head.

47. Fold the edges in toward
the centerline; the edges
should be vertical and parallel.

48. Unfold the two flaps.

49. Sink the edges on the
creases you just made.

50. Pull out a single layer of
paper partway on each side.

51. Mountain-fold the edges
underneath on each side.
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52. There is a small
Preliminary Fold at the top of
the head. Valley-fold the near
edges and mountain-fold the
far edges.

53. Pleat a single layer near
the bottom and swing the two
points out to the sides. Flatten
firmly.

54. Reverse-fold the corners.
Repeat on the far layers.

55. Mountain-fold the near
point as far down as possible.

56. Mountain-fold two edges
to the center line.

57. Mountain-fold the point
as far behind as possible.

58. Sink the corners of the
ears a bit.

59. Reverse-fold two corners. 60. Mountain-fold two edges.
Turn the paper over from top
to bottom.
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61. Fold one flap as far up to
the right as possible.

62. Valley-fold the flap out to
the side.

63. Pull out some loose paper.

64. Sink the point while
squash-folding one of the
white folded edges.

65. Close up the flap.

66. Narrow the leg a bit with a
valley fold.

67. Repeat steps 61–66 on the
right.

61–66

68. Curve the body so that the sides
are parallel and the middle is U-
shaped.
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69. Rotate the head slightly by adjusting
the location of the valley fold where it
joins the body.

70. Crimp the neck just behind the ears
 (the pleats tuck under the ears) and
rotate the head downward.

71. Mountain-fold the edges of the body
underneath.

72. Crimp the rear portion of the body
in two places to form legs.

73. Fold the tips of the hind feet
underneath. Round the belly and shape
the backs of the legs.

74. Crimp the trunk downward and spread
the layers at its tip. Shape the legs with
slight mountain folds. Adjust the overall
position of the limbs to a natural one.

75. Finished African Elephant.
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12. Box Pleating
Many box-pleated figures from Neal Elias and Max Hulme may be 
found in the following: 

Dave Venables, Max Hulme: Selected Works 1973–1979 (BOS Booklet 
#15), London, British Origami Society, 1979.

Dave Venables, Focus on Neal Elias (BOS Booklet #10), London, 
British Origami Society, 1978.

Dave Venables (ed.), Neal Elias: Miscellaneous Folds I (BOS Booklet 
#34), London, British Origami Society, 1990.

Dave Venables (ed.), Neal Elias: Miscellaneous Folds II (BOS Booklet 
#35), London, British Origami Society, 1990.

Dave Venables (ed.), Neal Elias: Faces and Busts (BOS Booklet #36), 
London, British Origami Society, 1990.

Eric Kenneway, Origami: Paperfolding for Fun, London, Octopus, 
1980, pp. 90–91 (Hulme’s Fly).

13. Uniaxial Box Pleating
The application of the straight skeleton to the one-straight-cut prob-
lem is described in:

Erik D. Demaine, Martin L. Demaine, and Anna Lubiw, “Folding and 
cutting paper,” Revised Papers from the Japan Conference on Discrete 
and Computational Geometry, edited by Jin Akiyama, Mikio Kano, 
and Masatsugu Urabe, Lecture Notes in Computer Science, volume 
1763, Tokyo, Japan, December 1998, pp. 104–117.

Erik D. Demaine, Martin L. Demaine, and Anna Lubiw, “Folding and 
one straight cut suffice,” Proceedings of the 10th Annual ACM–SIAM 
Symposium on Discrete Algorithms, 1999, pp. 891–892.

The program ReferenceFinder runs on Macintosh and is open-source; 
it and source code may be downloaded from: http://www.langorigami.
com/referencefinder.htm.

A full folding sequence for the Cerambycid beetle of Figure 13.41 
may be found in:

Robert J. Lang, Origami Insects II, op. cit., pp. 96–106.

14. Polygon Packing

At this writing, there is no single collective description of polygon 
packing, but many of the ideas may be found described in publications 
of OrigamiUSA and the Japan Origami Academic Association and can 
be seen in crease patterns by numerous artists on their websites.
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15. Hybrid Bases
Engel’s Butterfly may be found in:

Peter Engel, Folding the Universe: Origami from Angelfish to Zen, 
op. cit., pp. 292–311.

A full folding sequence for the Butterfly of Figure 15.5 may be  
found in:

Robert J. Lang, Origami Insects and their Kin, op. cit., pp. 40–45.

A full folding sequence for the Dragonfly of Figure 15.6 may be  
found in:

Robert J. Lang, Origami Insects II, op. cit., pp. 56–65.

A full folding sequence for the Rabbit of Figure 15.11 may be  
found in:

Robert J. Lang and Stephen Weiss, Origami Zoo, op. cit., pp. 115–119.

A full folding sequence for the Mouse of Figure 15.13 may be  
found in:

Robert J. Lang and Stephen Weiss, Origami Zoo, ibid., pp. 89–92.

Origami Societies
Many countries have origami societies that hold conventions and ex-
hibitions, sell origami supplies, and publish new and original designs. 
Four of the larger societies are: 

Origami USA
15 W. 77th St.
New York, NY 10024
http: //www.origami-usa.org

British Origami Society
c/o Penny Groom
2a The Chestnuts
Countesthorpe
Leicester LE8 5TL
http: //www.britishorigami.org.uk/

Japan Origami Academic Society
c/o Gallery Origami House
1-33-8-216, Hakusan
Bunkyo-ku, Tokyo
113-0001, JAPAN
http: //www.origami.gr.jp/

Nippon Origami Association
2-064, Domir-Gobancho
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12 Gobancho
Chiyoda-ku, Tokyo
102-0076 JAPAN
http: //www.origami-noa.com/

There are many other national origami societies and other origami-
related resources on the Internet. I will not give links here (Internet 
links tend to have a short half-life), but any good search engine will 
turn up numerous sites for origami supplies, pictures, commentary, 
and diagrams.
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Glossary

A
Active path (page 408): a path whose length on the crease pattern is equal 
to its minimum length as specified by the tree graph.
Active reduced path (page 426): a reduced path within a universal mol-
ecule whose length on the crease pattern is equal to its minimum length as 
specified by the tree graph.
Arrowhead molecule (page 358): a crease pattern within a quadrilateral 
that consists of a Waterbomb molecule combined with an angled dart; it al-
lows an arbitrary four-circle quadrilateral to be collapsed while aligning the 
four tangent points.
Assignment (page 21): the labeling of each fold in a crease pattern by its 
fold direction, e.g., mountain or valley.
Axial crease (page 246): a crease in a crease pattern that lies along the 
axis in the folded form of a uniaxial base.
Axial+N crease (page 604): an axis-parallel crease in a crease pattern whose 
elevation is N width units from the axis in the folded form.
Axial polygon (page 247): a polygonal region of paper in a crease pattern 
outlined by axial creases. In the folded form, the entire perimeter of an axial 
polygon lies along the axis of the base.
Axis (page 244): a line on a base along which the edges of flaps lie and to 
which the hinges of flaps are perpendicular.
Axis-parallel (page 574): any fold or line in a uniaxial base that lies on or 
parallel to the axis of the base in the folded form. Axial+N contours are all 
axis-parallel.

B
Base (page 53): a regular geometric shape that has a structure similar to 
that of the desired subject.
Bird Base (page 54): one of the Classic Bases, formed by petal-folding the 
front and back of a Preliminary Fold.
Blintzing (page 58): folding the four corners of a square to the center.
Blintzed base (page 58): any base in which the four corners of the square 
are folded to the center prior to folding the base.
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Branch edge (page 402): in a tree graph, an edge that is connected to two 
branch nodes.
Branch flap (page 575): a flap that is connected to other flaps at both ends. 
A branch flap is represented by a branch edge in a tree graph.
Branch node (page 402): in a tree graph, a node connected to two or more 
edges.
Branch vertex (page 416): a point in the crease pattern that corresponds 
to a branch node on the tree graph.
Book symmetry (page 305): the symmetry of a crease pattern that is 
mirror-symmetric about a line parallel to an edge and passing through the 
center of the paper.
Border graft (page 135): modifying a crease pattern as if you added a 
strip of paper along one or more sides of the square in order to add features 
to the base.
Box pleating (page 459): a style of folding characterized by all folds run-
ning at multiples of 45°, with the majority running at multiples of 0° and 
90° on a regular grid.

C
Circle/river method (page 368): a design technique for uniaxial bases 
that constructs the crease pattern by packing nonoverlapping circles and 
rivers into a square.
Circle packing (page 296): placing circles on a square (or other shape) so 
that they do not overlap and their centers are inside the square.
Classic Bases (page 54): the four bases of antiquity (Kite, Fish, Bird, and 
Frog) that are related by a common structure.
Closed sink fold (page 36): a sink fold in which the point to be sunk must 
be popped from convex to concave; it cannot be entirely flattened.
Comb (page 676): a structure in uniaxial bases consisting of a series of 
filaments spaced out along a longer shaft.
Composite molecule (page 360): a molecule that contains axial creases 
in its interior.
Contour (page 589): a line in the crease pattern that lies at a constant 
elevation from the axis in the folded form. It may or may not be folded.
Contour map (page 589): a pattern of lines in a uniaxial base in which 
the different axis-parallel lines are distinguished by their elevation, e.g., by 
color.
Corner flap (page 105): a flap whose tip comes from one of the corners of 
the square.
Crease (page 11): a mark left in the paper after a fold has been unfolded.
Crease assignment (page 21): determination of whether each crease is a 
mountain fold, valley fold, or flat (unfolded) crease. Also called crease parity.
Crease pattern (page 21): the pattern of creases left behind on the square 
after a model has been unfolded.
Crimp fold (page 31): a fold formed by two parallel or nearly parallel 
mountain and valley folds on the near layers of a flap with their mirror im-
age folds formed on the far layers.
Crystallization (page 308): the process of fixing the locations of circles 
in a circle packing by enlarging some of the circles until they can no longer 
move.
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Cupboard Base (page 57): a traditional base consisting of a square with 
two opposite edges folded toward each other to meet in the middle.

D
Decreeping (page 145): rearranging several trapped layers of paper so that 
no layer is wrapped around another.
Detail folds (page 53): folds that transform the flaps of a base into details 
of the finished subject.
Diagonal symmetry (page 306): the symmetry of a crease pattern that is 
mirror-symmetric about one of the diagonals of the square.
Dihedral angle (page 469): the angle between the two surfaces on either 
side of a crease, defined as the angle between the surface normals.
Distorted base (page 69): a modified base formed by shifting the ver-
tices of the crease pattern so that the paper can fold flat; the number 
of creases and vertices remains the same, but the angles between them 
change.
Double-blintzing (page 326): folding the four corners of a square to the 
center twice in succession.
Double rabbit-ear fold (page 26): a fold in which the creases of a rabbit 
ear are made on the near layer of a flap and the mirror-image creases are 
made on the far layer.
Double sink fold (page 35): two sink folds formed in succession on the 
same flap.

E
Edge (page 402): in a tree graph, a single line segment. Each edge cor-
responds to a unique flap or connector between flaps in the base. See leaf 
edge, branch edge.
Edge flap (page 105): a flap whose tip comes from one of the edges (but not 
a corner) of the square. An edge flap has twice as many layers as a same-size 
corner flap.
Edge weight (page 402): a number assigned to each edge of a tree graph 
that represents the length of the associated flap.
Efficiency (page 43): a measure of how much paper is used to obtain features 
of the subject versus extra paper that is merely hidden away.
Elevation (page 588): the distance of an axis-parallel crease (or in general, 
any point) from the axis in the folded form.
Elias stretch (page 506): A maneuver used in box pleating to create flaps 
from a pleated region of paper, by changing the direction of the pleats by 90° 
within wedges of paper.

F
Fish Base (page 54): one of the Classic Bases, formed by folding all four 
edges of a square to a common diagonal and gathering the excess paper in 
two flaps.
Flap (page 54): a region of paper in an origami shape that is attached only 
along one edge so that it can be easily manipulated by itself.
Folded edge (page 15): an edge created by folding.
Folded form (page 21): the result obtained after folding a crease pattern.
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Four-circle quadrilateral (page 355): a quadrilateral formed by connect-
ing the centers of four pairwise tangent circles; such a quadrilateral can be 
folded so that all edges lie on a line and the tangent points between pairs 
of circles touch.
Frog Base (page 54): one of the Classic Bases, formed by squash- and petal-
folding the four edges of a Preliminary Fold.

G
Gadget (page 629): a localized patch of crease pattern that can be substituted 
for an existing patch to add functionality or otherwise modify the pattern. 
Level shifters are examples of gadgets.
Generic form (page 253): a crease pattern within a molecule or group of 
molecules in which (a) all axial creases are shown as valley creases; (b) all 
ridge creases are shown as mountain creases; and (c) all hinge creases are 
shown as unfolded creases. The generic form is an approximation of the actual 
crease pattern of a folded base.
Grafting (page 135): modifying a crease pattern as if you had spliced into it 
a strip or strips of paper in order to add new features to an existing base.
Grafted Kite Base (page 708): a family of bases composed by adding a 
border graft to two sides of a Kite Base.
Gusset (page 32): one or more narrow triangles of paper, usually formed by 
stretching a pleat or crimp. Used in quadrilateral molecules and Pythagorean 
stretches.
Gusset molecule (page 361): a crease pattern within a quadrilateral  
that resembles a partially stretched Waterbomb molecule with a gusset 
running across its top. The gusset molecule, like the arrowhead molecule, 
allows any four-circle quadrilateral to be collapsed while aligning the  
tangent points.
Gusset sliver (page 646): a gusset crease closely spaced with an axis-parallel 
fold, resulting in a structure difficult to fold.

H
Hex pleating (page 659): a form of polygon packing in which the major 
creases run at multiples of 30° relative to one another.
Hinge (page 244): a joint between two flaps.
Hinge creases (page 348): creases that in a uniaxial base are perpendicu-
lar to the axis. Hinge creases define the boundaries of flaps or segments of 
a base.
Hinge polygons (page 349): polygons that turn into discrete flaps within 
a uniaxial base. Hinge polygons are the fundamental elements of polygon 
packing methods of design, and a hinge polygon represents the exact region 
of paper taken up by a particular leaf flap.
Hinge rivers (page 572): polygonal rivers that are packed along with hinge 
polygons in polygon-packed designs. A hinge rivers represents the exact region 
of paper taken up by a particular branch flap.

Hybrid base (page 699): a base that is constructed using multiple design 
techniques.
Hybrid reverse fold (page 24): a more complicated form of reverse fold 
that combines aspects of both inside and outside reverse folds.
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I
Ideal split (page 100): a technique for splitting a Kite Base flap, which 
gives the longest possible pair of flaps.
Inflation (page 308): the process of adding circles to a crease pattern (cor-
responding to adding flaps to a base) and expanding the circle (lengthening 
the flap) until it touches three or more others. In box pleating, inflation 
enlarges hinge polygons without necessarily making their corresponding 
flaps longer.
Inside reverse fold (page 23): a method of changing the direction of a flap, 
wherein the moving layers are inverted and tucked between the stationary 
layers.

K
Kite Base (page 54): the simplest of the Classic Bases, formed by folding 
two adjacent edges of a square to the same diagonal.

L
Leaf edge (page 402): in a tree graph, an edge connected to at least one 
leaf node.
Leaf flap (page 575): a flap in a uniaxial base that is connected to the base 
at one end and is free at the other end. Leaf flaps are represented by leaf 
edges in the tree graph.
Leaf node (page 402): in a tree graph, a node connected to only a single 
edge.
Leaf vertex (page 404): a point in the crease pattern that corresponds to 
a leaf node on the tree graph.
Level shifter (page 626): a pattern of creases in a uniaxial polygon-packed 
design that replaces one or more segments of ridge crease in order to shift the 
elevation of a crease on one side of the ridge relative to that of the other.

M
Meander (page 651): a pattern within a river in which one bank of the 
river contacts itself, so that the river appears to be wider than its designated 
width.
Middle flap (page 105): a flap whose tip comes from the interior of the 
square. A middle flap has twice as many layers as a same-sized edge flap 
and four times as many as a corner flap.
Mixed sink fold (page 38): a sink fold containing aspects of both open and 
closed sinks.
Molecule (page 352): a crease pattern which, when folded flat, has its  
perimeter lie along a common line and for which specified points along the 
perimeter (the tangent points) become coincident in the folded form.
Mountain fold (page 18): a crease that is concave downward. Usually 
indicated by a dot-dot-dash line (black line in crease patterns).

N
Node (page 402): in a tree graph, an endpoint of a line segment. See leaf 
node, branch node.
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O
Offset base (page 68): a modified base formed by shifting the entire crease 
pattern on the square while preserving angles between creases, so that extra 
paper is created in some locations while others lose paper.
Open sink fold (page 34): a sink fold in which the point to be sunk can be 
entirely flattened during the course of the sink.
Origami (page 1): the art of folding paper into decorative shapes, usually 
from uncut squares.
Origami sekkei: see Technical folding.
Outside reverse fold (page 23): a method of changing the direction of a 
flap, wherein the moving layers are inverted and wrapped around the sta-
tionary layers.

P
Parity: see Crease assignment.
Path (page 408): a line between two leaf vertices in the crease pattern.
Path conditions (page 411): the set of all inequalities relating the coordi-
nates of the leaf vertices, the distances between their corresponding nodes, 
and a scale factor. The distance between any two vertices must be greater 
than or equal to the scaled distance between their corresponding nodes as 
measured along the tree.

Petal fold (page 28): a combination of two squash folds in which a corner 
is lengthened and narrowed.

Plane of projection (page 402): a plane containing the axis of the base 
and the axial edges of all flaps, and that is perpendicular to the layers of 
the base.

Plan view (page 313): a model is folded in plan view if, when it lies flat, 
you are looking at the top of the subject.

Pleat fold (page 31): a fold formed by two parallel or nearly parallel moun-
tain and valley folds formed through all layers of a flap.

Pleat grafting (page 203): adding one or more pleats that run across a 
crease pattern in order to add features or textures formed by the intersec-
tions of the pleats.

Polygon packing (page 625): a design technique for creating uniaxial bases 
in which polygons represent each of the leaf flaps and polygonal rivers repre-
sent each of the branch flaps in the base. Uniaxial box pleating and uniaxial 
hex pleating are both examples of polygon packing techniques.

Precreasing (page 12): folding and unfolding to create the creases required 
for a (usually complex) step.

Point-splitting (page 93): any of a variety of techniques for folding a single 
flap so that it turns into two or more smaller flaps.

Preliminary Fold (page 56): a traditional base formed by bringing the four 
corners of the square together.

Pythagorean stretch (page 640): a structure in uniaxial box pleated 
bases that allows flap centers to be closer to each other than their polygons 
allow.
Pythagorean stretch, extended (page 647): a variation of a Pythagorean 
stretch in which a larger perfect Pythagorean stretch overlaps a corner of 
the paper to give evenly spaced contours around the gusset.
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Pythagorean stretch, offset (page 646): a variation of a Pythagorean 
stretch in which the vertices at opposite ends of the stretch lie at different 
elevations.
Pythagorean stretch, perfect (page 642): a version of a Pythagorean 
stretch in which the vertices of the gusset lie at the vertices of its bounding 
rectangle.

R
Rabbit-ear fold (page 25): a combination fold that turns a triangular cor-
ner into a flap by folding along all three angle bisectors of the triangle and 
gathering the excess paper into a flap.

Rabbit-ear molecule (page 354): the pattern of creases within a triangle 
that collapses its edges to lie on a single line.

Raw edge (page 15): the original edge of the paper, as opposed to an edge 
created by folding.

Reduced path (page 425): a path between two inset vertices created during 
the construction of the universal molecule.

Reduced path inequality (page 425): an inequality condition analogous 
to the path condition that applies to inset vertices and paths in the universal 
molecule.

Ridge crease (page 349): a crease within a molecule that propagates inward 
from the corners of the molecule. Ridge creases are always valley folds when 
viewed from the interior of a molecule. In polygon packing, ridge creases fol-
low the straight skeleton and can be either mountain or valley.

River (page 257): an annular segment or rectangular region in a tile or crease 
pattern that creates a segment between groups of flaps in the folded form.

S
Sawhorse molecule (page 365): a crease pattern within a quadrilateral 
similar to the Waterbomb molecule, but with a segment separating the two 
pairs of flaps. Also known as the Maekawa molecule.

Scale (page 298): a quantitative measure of efficiency. The scale of a crease 
pattern is the ratio between the length of a folded flap and the length of its 
corresponding edge in the tree graph.

Side view (page 313): a model is folded in side view if when the model lies 
flat you are looking at the side of the subject.

Sink fold (page 33): inversion of a point. Sink folds come in several differ-
ent types.

Splitting points: see point-splitting.

Spread sink fold (page 33): a sink fold in which the edges of the point are 
spread and the point flattened. Similar to a squash fold.

Squash fold (page 27): a fold in which the edges of a flap are spread, usu-
ally symmetrically, and the edges flattened.

Standard bases (page 56): the most common origami bases, usually taken 
to include the Classic Bases plus the Windmill Base, Cupboard Base, Pre-
liminary Fold, and Waterbomb Base.

Straight skeleton (page 584): a tree graph within a polygon, created by 
translating the edges inward at a constant velocity and tracing the traveling 
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points of intersection between pairs of edges. Each line segment in the straight 
skeleton is the angle bisector between two edges of the polygon.
Stretched Bird Base (page 57): a form of the Bird Base in which two op-
posite corners are pulled apart to straighten out the diagonal that connects 
them.

Strip graft (page 141): modifying a crease pattern as if you spliced in 
one or more strips of paper running across a crease pattern in order to add 
features to the base.

Structural coloring (page 349): a representation of a crease pattern in 
which lines are color-coded according to their structural role and elevation.
Stub (page 423): a new edge added to the tree graph attached to a new 
node introduced into the middle of an existing edge and associated creases 
added to the crease pattern. Adding a stub allows four path conditions to be 
simultaneously satisfied as equalities.
Subbase (page 411): a portion of a base, usually consisting of a single axial 
polygon.
Subtree (page 411): the tree graph that is the projection of a subbase.
Swivel fold (page 28): an asymmetric version of a squash fold in which the 
two valley folds are not collinear.

T
Tangent points (page 347): points along axial polygons where circles (or 
rivers) touch each other and are tangent to the hinge creases.
Technical folding (page 48): origami designs that are heavily based on 
geometric and mathematical principles.
T-graft (page 486):  a type of graft used in box pleating that creates a flap 
at a designated spot along the edge of the paper.
Tile (page 250): a portion of a crease pattern, usually consisting of one or 
more axial polygons and decorated by circles and rivers, that can be assembled 
into crease patterns by matching circle and river boundaries.
Tree (page 402): short for tree graph.
Tree graph (page 402): a stick figure that represents a uniaxial base,  
in which each edge of the tree represents a unique flap or connection  
between flaps.
Tree theory (page 401): the body of knowledge that describes the quan-
titative construction of crease patterns for uniaxial bases based on a cor-
respondence between features of a tree graph and features in the crease  
pattern.
Tree theorem (page 407): the theorem that establishes that satisfying 
the path conditions is both necessary and sufficient for the construction of a 
crease pattern for a given tree graph.
Triangulation (page 423): the process of decomposing high-order axial 
polygons in a crease pattern into smaller polygons that are all order-3, i.e., 
triangles.

U
Unfold (page 11): removing a valley or mountain fold, leaving behind a 
crease.
Uniaxial base (page 244): a base in which all flaps lie along a single axis 
and all hinges are perpendicular to the axis.
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Uniaxial box pleating (page 561):  a subset of box pleating in which the 
90° symmetries of box pleating are used to create uniaxial bases or portions 
thereof.
Unit (page 634): the shortest distance of length and/or width in a polygon-
packed base; most flaps’ dimensions (length and/or width) will be an integer 
multiple of the unit.
Universal molecule (page 424): a generalization of the gusset molecule 
that can be applied to every valid axial polygon.
Unsink (page 39): removing a sink fold, or turning a closed sink from con-
cave to convex.

V
Valley fold (page 18): a crease that is concave upward. Usually indicated 
by a dashed line (solid colored line in crease patterns).
Vertex: see leaf vertex, branch vertex.

W
Windmill Base (page 56): a traditional base that looks like a windmill.
Waterbomb Base (page 56): a traditional base formed by bringing the 
midpoints of the four edges of a square together.
Waterbomb condition (page 355): a quadrilateral satisfies the Waterbomb 
condition if and only if the sums of opposite sides are equal. A quadrilateral 
that satisfies this condition can be folded into an analog of the traditional 
Waterbomb Base.
Waterbomb molecule (page 355): a crease pattern within a quadrilat-
eral that resembles the traditional Waterbomb. Also called the Husimi  
molecule.

Y
Yoshizawa split (page 94): a technique for splitting a Kite Base flap, in 
which the point is first sunken, followed by two spread sinks.
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Index

A
A bases, Uchiyama’s  58
ABCs of Origami, The  62
Acrocinus longimanus

crease pattern, base, and folded 
model  317

action figures  1
active path  408, 411, 415, 424, 
   426, 427, 428, 743
active reduced path  426, 743
African Elephant

crease pattern, base, and folded 
model  713

Alamo Stallion
crease pattern, base, and folded 

model  434
angle bisectors  

25, 251, 356, 415, 749
Ant

crease pattern, base, and folded 
model  377

Arnold, Vladimir  329
arrowhead molecule 358, 413, 
   423, 743
arrows

fold and unfold  20
mountain fold  18
push here  16
rotate the paper  16
turn over  16
unfold  19
valley fold  18

arthropods  700
axial+1  604
axial+2  628
axial contour  604
axial creases  

246, 346, 348, 409, 743

axial polygons  247, 250, 252, 
   263, 297, 317, 334, 349, 351, 
   368, 382, 401, 411, 420, 424,
   743
axis  743
axis-parallel creases  574

B
base  7, 743

Bird Base  54
blintzed  743
Cupboard Base  57
definition of  53
distorted  69, 745
Fish Base  54
Frog Base  54
hybrid  8, 699, 746
Kite Base  54
Lizard  242
Montrolls Dog Base  244
multiaxial  705
offset  68, 748
Preliminary Fold  56
Turtle  242
uniaxial  750
Waterbomb Base  56
Windmill Base  57

baseline of a flap  95
bases

relationship between standard  
58

Uchiyama’s A and B  58
basic folds  6
Bat, Rhoads’s  57
B bases, Uchiyama’s  58
beetle

box-pleated  601
circle-packed  564

Bern, Marshall  21
Bird Base  54, 242, 248, 323, 
   329, 347, 403, 464, 474, 743

as narrowed Waterbomb 
        molecule  266
blintzed  57, 62, 326, 328
equivalence to stub-divided quad  

423
in Valentine  67
stretched  57, 750
strip grafting  249
with squares added to corners  135

blintz  58
blintzed Bird Base  326, 328
blintzing  743
body between flaps  257
book symmetry  305, 744
bookworm

in splitting points  98
in tree theory  404

border graft  135, 744
bouncing contours  596
box

from rectangle  470
traditional  467

box pleating  8, 459, 562, 744
uniaxial  562, 573

branch edges  402, 744
branch flap   575
branch nodes  402, 409, 413, 416, 
   420, 744
branch vertices  409, 413, 416, 
   744
British Origami  62
Bug

Rhoads, George  326
Bug Wars  383
Bull Moose

crease pattern, base, and folded 
model  609
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Crawfish
crease pattern, base, and folded 

model  157
Crawford, Patricia  713
crease assignment  21, 22, 744, 
            748

around a vertex  371
within molecules  368

crease patterns  7, 744
lines used in  22

creases  744
axial  409
axis-paralell  574
definition of  11
gusset 369
hinge  348
pseudohinge  416, 581
ridge  349, 749

creativity, nature of  5
crimp fold  31, 744

in a gusset molecule  362
stretching  32

Crow
folding sequence for  130

crystallization  308, 310, 744
Cupboard Base  57, 745
Cyclomatus metallifer

contour map, base, and folded 
model  669

D
decreeping  145, 745
degenerate vertices  426
degrees of freedom  421
Demaine, Erik  584, 588, 596, 658
dense bouncing  656
dense contours  656
design, basic principles  48
detail folds  53, 745
diagonal diagonal symmetry  306
diagonal symmetry  745
diagramming symbols and terms  

13
diagrams, level of detail in  48
difficulty, scale of  28
dihedral angle  469, 745
distance

in folded form versus crease 
         pattern  151

distorted base  69, 745
Dog Base  244
double-blintzed Frog Base  326
double-blintzing  326, 745
Double-Boat Base  57
double rabbit-ear fold  26, 745
double sink fold  35, 745

Butterfly
crease pattern, base, and folded 

model  703

C
Camel Spider

contour map and folded model  
641

Centipede  677
crease pattern, base, and folded 

model  278
Cerambycid Beetle  641

crease pattern, base, and folded 
model  606

Cerceda, Adolfo  713
Chan, Brian  563
Cicada Nymph  676

contour map, base, and folded 
model  655

circle method  298
circle packings  7, 291, 296, 299, 
   352, 364, 378, 401, 702, 744

bases from equal circle 
        packings  322
equivalence to mathematical 
        circle packing  317
limitations of  699
limits for large numbers of 
        flaps  304
optimal packings, 110 circles  318
three regular  301

circle/river method  7, 368, 744
circle/river packings  474

molecules for  364
circle/river patterns  269
circles

connection to tiles  297
in circle/river packings  412
in Classic Base triangle  63
minimum boundary of a flap  293
overlap, impermissibility  295

Classic Bases  54, 744
closed sink fold  36, 744
Cockroach

crease pattern, base, and folded 
model  378

colliding squares  637
comb  676
complexity  42
composite molecules  360, 380, 744
contour lines  589

bouncing  596
infinite bouncing  596

corner flap  105, 291, 744
Correia, Jean-Claude, crossing 

pleats  204

Dragonfly
crease pattern, base, and folded 

model  705
Dragon, Robert Neale’s  139
Dump Truck  562

E
edge flap  105, 291, 745

splitting of  105
edges  402, 745

branch  402
folded  745
leaf  402, 747
raw  749

edge weight  402, 745
efficiency  745

in pleated textures  211
of a circle packing  299
of middle flaps  321

elegance  43
elephant

African Elephant  42, 713
Elephant’s Head  44
Elephant’s Head with longer 

tusks  45
Elephant’s Head with tusks  44
Elephant’s Head with white 

tusks  51
exhibition of  1
going to see  713
One-Crease Elephant  41

elevation  588
Elias, Neal  48, 64, 461, 480, 562, 
   680, 713
Elias stretch  562, 745
Emu

crease pattern, base, and folded 
model  322

Engel, Peter  42, 48, 587, 700
Euclid  353
Eupatorus gracilicornis

crease pattern, base, and folded 
model  383

Euthysanius Beetle
contour map and folded 
         model  678

extended Pythagorean stretch  647

F
families of creases  349
filaments

in comb  676
Fish Base  54, 151, 242, 248, 
   346, 711, 745

constructed from two tiles  255

© 2012 by Taylor & Francis Group, LLC



755Index

Five-Sided Square, Montroll’s  300
five-star graph  420
flap  745

corner  744
definition of  54
edge  745
middle  747

Floderer, Vincent  714
Flying Cicada

crease pattern, base, and folded 
model  315

Flying Grasshopper
crease pattern, base, and folded 

model  433
Flying Ladybird Beetle

crease pattern, base, and folded 
model  315

Flying Walking Stick
contour map and folded model  625

fold
3 types of  11
and unfold, symbols for  20
closed sink  36
crimp  31
double rabbit-ear  26
double sink  35
hybrid reverse  25
inside reverse  23
mixed sink  38
mountain  747
mountain, symbols for  18
multiple sink  35
open sink  34
outside reverse  23
petal  28, 748
pleat  31, 748
rabbit-ear  25, 749
reverse, crease patterns for  25
sharpness of  12
sink  33, 749
spread sink  33, 749
squash  27, 749
swivel  28, 750
unfolding, symbols for  19
unsink  39
valley  751
valley, symbols for  18

fold angle
definition of  12

folded edge  15, 745
folded form  7, 21, 151, 209, 255, 

349
four-circle quadrilateral  355, 746
four-star graph  416
Frog Base  54, 105, 142, 158, 
   242, 248, 292, 300, 323, 328, 
   348, 349, 465, 707, 746

in Hummingbird  67
Fujimoto, Shuzo  48, 204

G
gadget

level-shifting  629
level-shifting for box pleating  

630
gaps

allocation of paper in splitting 
points  99

delineation by circles  702
in multiple-point splits  110

generic form  369, 746
of a tile  253

Georgeot, Alain  41
exhibition  1

gestalt  465
Goldberg, Michael  329
grafted Kite Base  708, 746
grafting  7, 130, 746

along edges  146
border  135
comparison of strip and border  

142
in box pleating  472
pleat  748
strip  141, 702, 750
strip, to create texture  197

graph
five-star  420
four-star  416
sawhorse  416

grasshopper
choice of circles in design  307

Grasshopper
crease pattern, base, and folded 

model  115
gusset

in a stretched pleat or crimp  32
gusset creases

crease assignment  369
gusset molecule  361, 413, 416, 
   427, 746

in polygon packing  674
gusset slivers  646

H
Harbin, Robert  713

diagramming symbols  13
naming of Preliminary Fold  57
symbol for repeated steps  17
versions of stretched Bird Base  

57
Hayes, Barry  21
Hedgehog, John Richardson’s  204
Hercules Beetle

crease pattern, base, and folded 
model  275

hex pleating  660
hinge creases  348, 357, 746

crease assignment  369
in molecules with rivers  416

hinge polygons  349, 571
hinge rivers  572, 651
hinges  244, 746

in uniaxial bases  402
Honda, Isao

diagramming symbols  13
use of cuts  94

Hulme, Max  48, 480, 562
Husimi, Koji  352, 353, 357, 424
hybrid base  699, 746
hybrid reverse fold  25, 746

I
ideal split  100, 747

Montroll’s sequence for folding  
102

inflation  302, 380, 580, 747
in tree theory  420
of circles  310
selective  308

inscribed circle
in Waterbomb molecules  357

insects  700
inset distance

in universal molecule  426
inside reverse fold  23, 747
instructions, verbal  14
irreducible complexity  563, 681

J
Japanese Horned Beetle

crease pattern, base, and folded 
model  158

jig
for circle packing  302, 374

Joisel, Eric  714
Pangolin  204

Justin, Jacques  353, 357, 371, 
   424

K
Kamiya, Satoshi  48, 631
Kasahara, Kunihiko

Dragon  139
Kasahara-Neale Dragon  139
Kawahata, Fumiaki  48, 352, 430
Kawasaki, Toshikazu  352, 353, 424
Kenneway, Eric  62
Kite Base  54, 94, 111, 205, 242, 
   346, 747

grafted  708
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KNL Dragon  708
crease pattern, base, and folded 

model  141
Koi

crease pattern, base, and folded 
model  205

kozo  15

L
layer management  632
leaf edges  402, 747
leaf flap  575
leaf nodes  402, 404, 406, 747
leaf vertices  404, 406, 747
length of a path  408
Lepidoptera  700
level shifter  629

hex-pleated  664
line types in diagrams  15
Lizard

crease pattern, base, and folded 
model  147

Lizard base  242, 263
lokta  15
Longhorn Beetle

contour map and folded model  
641

M
Maekawa, Jun  48, 352, 357, 365, 
   371, 430
mapping from square to tree  404
matching rules  7
McLain, Raymond K.  461
meander  651
Meguro, Toshiyuki  48, 334, 352, 
   365, 651
Melissen, Hans  329
middle flap  105, 155, 275, 291, 
   313, 711, 747

relative efficiency  321
splitting of  105

Milano, R.  329
MIT  584
Mitchell, Dave  41
mixed sink fold  38, 747
molecules  8, 352, 412, 581, 747

arrowhead  358
composite  360
gusset  361, 638
quadrilateral  354
rabbit-ear  354, 749
sawhorse  365
simple  360
triangle  352
universal  424

Waterbomb  355
with rivers  364

Mollard, Michael  329
Momotani, Yoshihide  204
Montoya, Ligia  713
Montroll, John  48, 706

bag of tricks  4
Dog Base  244
Five-Sided Square  300

Mooser, Emmanuel  459
Mooser’s Train  459

building block for  479
mountain fold  747

definition of  11
Mouse

crease pattern, base, and folded 
model  711

multiaxial base  705

N
Napkin Folding Problem  329
Neale Dragon  139
nodes  402, 747

branch  402, 744
leaf  402, 747

nonessential paper  148
np-completeness  21, 579

O
offset

Bird Base with preserved corners  
69

offset base  68, 748
offset Pythagorean stretch  646
one-cut problem  352, 588, 596
one-straight-cut  584
open sink fold  34, 748
Oppenheimer, Lillian  713
optimization  412
Orchid

crease pattern, base, and folded 
model  375

origami  1, 748
age of  3

Origami Dokuhon I  95
origami sekkei  5, 9, 48, 748
outside reverse fold  23, 748
overlapping polygons  636

P
Palmer, Chris K.  205, 714
Pangolin, Eric Joisel’s  204
paper coloration  14
parity  34, 748
path  748

active  408, 585
between leaf vertices  408
cross  585
of the bookworm  405

path conditions  411, 412, 413, 
   748
path equalities  420, 422
path inequalities  420, 426
Payan, Charles  329
Pegasus

crease pattern, base, and folded 
model  260

perfect offset Pythagorean stretch  
646

perfect Pythagorean stretch  642
Periodical Cicada

crease pattern, base, and folded 
model  277

petal fold  28, 748
an edge  29
as a combination of swivel folds  

28
Pill Bug  677

crease pattern, base, and folded 
model  278

plane of projection  402, 408, 748
plan view  313, 433, 662, 705, 748
pleat fold  31, 748
pleat grafting  203, 748
pleats

coalescence of  156
in strip grafts  153

point-splitting  7, 93, 130, 142, 
   275, 748

four from a corner flap  131
polygon packing  573
polygons

axial  351
hinge  349, 571
overlapping  636

Praying Mantis
crease pattern, base, and folded 

model  275
precreasing  748

in petal folds  29
value of  12

Preliminary Fold  56, 748
appearance in fish scale  208
similarity to Five-Sided Square  

301
pseudohinge crease  416, 581
Pteranodon

crease pattern, base, and folded 
model  102

Pythagorean stretch  640
extended  647
offset  646
perfect  642
perfect offset  646
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R
Rabbit

crease pattern, base, and folded 
model  709

rabbit-ear fold  25, 749
rabbit-ear molecule  354, 413, 415, 
           428
Randlett, Samuel L.  713

diagramming symbols  13
raw edge  15, 749
rectangle, in Mooser’s Train  461
reduced path  749

inequality  425, 749
length  425

reduced polygon  425
ReferenceFinder  561, 564, 571
reverse fold

hybrid  25, 746
inside  23, 747
outside  23, 748

Rhoads, George
Bat  57
Bug  326
use of blintzed Bird Base  64

Richardson, John
Hedgehog  204

ridge creases  349, 368, 416, 434,
           749

crease assignment  368
rivers  257, 364, 749

hinge  572
in circle/river packings  317, 412

Rohm, Fred  64, 464, 713
Roko-an  135
Roosevelt Elk

crease pattern, base, and folded 
model  435

S
Salt Creek Tiger Beetle

contour map, base, and folded 
model  630

sawhorse graph  416
sawhorse molecule  365, 413, 416, 
           749
scale  410, 749

of a circle packing  298
scales, representation with pleats  

206
Scarab Beetle

contour map, base, and folded 
model  666

Schaer, Jonathan  329
Scorpion

crease pattern, base, and folded 
model  432

Scorpion HP  676
contour map and folded model  669

Sea Urchin, Lang’s  62, 333
shadow of a uniaxial base  402
Shafer, Jeremy  145
shaft

in comb  676
Shiva

crease pattern, base, and folded 
model  273

side view  313, 749
silver rectangle, definition of  265
simple molecule  360
sink fold  33, 749

closed  36
different ways of making  38
double  35
mixed  38, 747
multiple  35
open  34, 748

Solorzano Sagredo, Vicente  713
Songbird 1

crease pattern, base, and folded 
model  138

Songbird 2
crease pattern, base, and folded 

model  325
split, ideal  747
splitting  748
spread sink fold  33, 749
Spur-Legged Dung Beetle

contour map, base, and folded 
model  678

squash fold  27, 749
stability of a circle packing  325
standard bases  749
Stephenson Rocket  562
stick figure  266, 291, 372, 375, 
   384, 401

rules for construction  269
straight skeleton  352, 584

definition  584
in roof design  587

stretch
extended Pythagorean  647
offset Pythagorean  646
perfect offset Pythagorean  646
perfect Pythagorean  642
Pythagorean  640

stretched Bird Base  115, 158, 750
stretching

a crimp or pleat  32
a parallelogram molecule  277
crossing pleats  206
the simple box  470
to form an open sink  34
to form a spread sink  33
to form a stretched Bird Base  57

string-of-beads method  430
strip graft  750
structural coloring  349
stub  423, 428, 750
subbase  411, 750
subtree  411, 415, 750
surjective mapping  404
swivel fold  28, 750
symbols

for actions  16
point of view  16
repetition of steps  17
right angle  17

symmetry
book  305, 744
diagonal  745
in circle-packed bases  304
in computed bases  433
left-right, in molecules  360
of a square  305

T
tangent circles  346
tangent points  347, 348, 357, 
   412, 750
Tarantula

crease pattern, base, and folded 
model  314

symmetry of  304
technical folding  5, 9, 748, 750
thickness

balancing by adding layers  632
three-legged animals  56, 97
three-step models  563
tile  750

as element of pleated texture  209
connection to circles  297
dimensional relationships within  

275
generic form  253
matching rules  253
methods of narrowing  264
of creases  250
parallelogram  277
rectangle  252
subdivision of  265
triangle  251

tiling  7, 412
Train, Mooser’s  562
tree  402, 750
Tree Frog

crease pattern, base, and folded 
model  146

tree graph  402, 584, 750
Treehopper

crease pattern, base, and folded 
model  158
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TreeMaker  431, 561, 569
tree theorem  407, 424, 427, 750
tree theory  8, 362, 401, 750
triangle

appearance in Classic Bases  61
molecule  352

triangulation  423, 750
Turtle  325

crease pattern, base, and folded 
model  198

turtle base  242

U
Uchiyama, Kosho  48, 713

system of bases  58
Uchiyama, Michio  713

system of bases  58
Unamuno, Miguel de  713
unfold  750

as a type of fold  11
uniaxial base  7, 244, 294, 402, 
   705, 750
uniaxial box pleating  562, 573, 
   660
uniaxial hex pleating  660
universal molecule  424, 584, 590, 
   751
unryu  15
unsink fold  39, 751

V
valency  301
Valette, Guy  329
valley fold  751

definition of  11
vertices

branch  409, 744
leaf  404, 747

W
Walrus

crease pattern, base, and folded 
model  114

washi  15
Waterbomb Base  56, 158, 323, 
   356, 627, 751

as a uniaxial base  245
as limiting case of rectangle tile  252
offset, use in Baby  69

Waterbomb condition  355, 366, 751
Waterbomb molecule  355, 413, 
   416, 428, 751

as limiting case of sawhorse 
         molecule  365

Water Strider
contour map and folded model  643

wedge of creases in split point  110
weight, of an edge  402
Western Pond Turtle

crease pattern, base, and folded 
model  203

Windmill Base  57, 244, 751
in Stealth Fighter  64

Y
Yoshino, Issei  48
Yoshizawa, Akira  713

Crab  62, 326
diagramming symbols  4, 13
optimum-length split  95
splitting technique  94

Yoshizawa split  100, 751

Z
zone of acceptability

for overlapping polygons  638
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