
n his 2007 book Geometric Puzzle Design, Stewart Coffin discusses the six-piece burr in chapter 7, and reports that Jerry Slocum's New Findings on the History of the Six Piece Burr traces the six-piece burr back to Germany in 1698. See the 1728 Cyclopectia of Ephraim Chambers (online at the University of www.cyclopedia.org).

You can see a six-piece burr in the lower left area of the frontispiece by John Sturt, which is a modified and left-to-right nverted copy of a 1698 engraving entitled "L'Acadŭmie des Sciences et des Beaux Arts" by Sübastien Leclerc (or Le Clerc).

Read about this engraving at the University of Oxford. It is also noted in David Singmaster's Sources in Recreational Mathematics.

Stewart Coffin's book The Puzzling World of Polyhedral Dissections hosted on John Rausch' site contains a good introduction to this type of puzzle. Martin Gardner discusses burrs briefly (as an introduction to the puzzle sculptures of Miguel Berrocal) in his 1989 book Penrose Tile to Trapdoor Ciphers, and most of the key puzzle authors mention the puzzle. There have been sporadic fits of research into the six-piece burr, including an extensive analysis by hand by the Dutch mathematician J. H. de Boer, and work by Tom O'Beirne and Arthur Cross, but William (Bill) Cutler has performed (starting in 1975) the definitive computer analysis, and the statistics cited below are based on his analysis.

One can visualize a burr piece as being composed of unit cubes arranged in a $2 \times 2 \times 2 n$ prism where n is greater than or equal to (and usually) 3 . A solid piece will contain 24 unit cubes, and other piece types will have some of the cubes removed, resulting in notches. The burrs in this section are composed of six such pieces, usually but not always distinct, selected from the overall set of possible such pieces (of a given length), and interlocked in a characteristic $2 \times 2 \times 2$ pattern along 3 orthogonal axes. The burr shape is tricky to envision without an example in front of one, but it gets easier with practice.

In the burr shape there are $\mathbf{3 2}$ internal cube positions where the pieces would overlap, but musn't in order to fit together. These 32 internal cubes must be distributed among the six pieces in some way that (a) permits every piece to remain undivided, (b) permits the six pieces to interlock together, and (c) permits the pieces to be assembled and disassembled - i.e. it is constructible (some groups of pieces can be fit together without overlap internally, but they interlock in such a way that they could never actually be put together from scratch that way these are called "apparent" or "false" assemblies). These constraints mean that all pieces, except a maximum of one possible "key" piece, must be notched to remove some cubes, and that only
certain sets of notchings will work together.

You can only remove up to 10 of 12 specific cubes from a $2 \times 2 \times 6$ prism before it becomes disjoint or improperly notched for this type of puzzle (for example, showing notches on the outside where they shouldn't be visible). Overall, this results in 837 distinct physical pieces.
Cutler determined that there are $\mathbf{3 5 , 6 5 7 , 1 3 1 , 2 3 5}$ ways that six pieces drawn from the universe of 837 fit together in the requisite shape (allowing dups of pieces within a set, but discarding rotations and mirror image assemblies of sets), but of those 35 billion, "only" about $\mathbf{5 . 9 5}$ billion (estimated) are constructible puzzles.
There is a distinction made between burr puzzles that contain no internal "holes" or voids termed solid burrs, and those that do contain one or more - termed holey burrs. There are $\mathbf{1 1 9 , 9 7 9}$ solid burrs, and there are 369 piece types needed to produce them. Of those the solid burs. The rest of those 5.95 billion puzzes are holey burs.
holey burr can contain from 1 to 20 holes. The weight of a burr relates to the number of ternal holes it has, and can range from 32 (no internal holes), down to 12 (the maximum of 20 holes). The weight of a piece refers to the number of cubies not removed
from it, and can range from 12 (the key) down to 2 (the Y). If the sum of the weights of six pieces exceeds 32, it is impossible to construct a valid burr from that set.

Also, there is a distinction made among the pieces which can be produced without hard-tomanufacture blind (or internal) corners (i.e. where the sides of at least 3 cubies meet in concavity) versus those that cannot. Any piece without any such blind corner can be made sing a milling machine and is mable, otherwise it in general type piece. (In a millable ece, ay a cut pable saw (with a dado blade), or by hand without resorting to a chisel, one must also avo on internal edges that run parallel to the piece's long axis, and employ only cuts running perpendicular to the long axis. These pieces are called notchabley and there are only hem (they're all millable, too). Only 25 of those 59 pieces are useful to build solid burrs, and only 314 solid burrs can be made from that set of 25 (some dups are required, so you need a set of 42 pieces with dups). Overall, the 59 notchable pieces can be used to make 13,354,991 assemblies.

The level of a burr puzzle is the number of distinct linear moves (a shift of one or more pieces together, sometimes by one unit but usually by an arbitrary number of units, in just one irection) that must be performed to remove the first piece or pieces - there can be a oncatenation of figures usually separated by dots - these are the numbers of steps to remove uccessive pieces.

All solid burrs are level 1 - they come apart without any preliminary shifting. Burrs with internal holes can achieve higher levels, and one goal of research has been to delimit what is possible in terms of level complexity.

Bill Cutler has done extensive analysis on both the "holey" six-piece burr and all six-piece burrs in general, and Bill offers several burrs for sale
Jürg von Känel created the wonderful Burr Puzzles Site hosted at IBM Research. Jürg's site ffers a solution analyzer applet and historical info about burrs.

Bruno Curfs' site (now defunct?) offered additional analysis. Ed Pegg wrote a good survey rticle about burrs. Peter Roesler's site also discusses burr puzzles, and has an interesting history f Willem van der Poel's Grandfather 6x6x6 burr. You can see some burrs at John Rausch's uzzleworld. You can use Andreas Röver's Burr Tools to model, solve, and design burr puzzles.
If you're interested in collecting 6-piece burrs, I suggest you first check out Ishino's "Puzzle Wil Be Played" site to get some idea of the variety available. Look under "Interlocking (6 piece burr raditional)." Though they may be sold under different names and by different vendors, burr zzles that use the same set or six pight isomorpic ane. Thical solutions (athoug e solutions) That site also provides omprehensive catalogue of burr pieces.

Note that when discussing traditional burrs, twists or rotations of pieces typically are not equired or allowed. It is possible, however, to design burrs that appear traditional but equire such moves and frustrate the usual computer analysis - for example, see Bill Cutler rogrammer's Nightmare burr. For some burr designs, twisting a piece might be possibl and might offer a shortcut, but isn't strictly required. It is also possible to mimic the outer apearance of a traditional bur bate such designs are outside the scope of this section (e.g. Cutler's Explode-A-Burr).

Check out a nice writeup on how to go about solving 6-piece burrs, written by Guillaume Largounez, over at the Puzzle Place Wiki.

Identifying Burr Pieces

Over the years, different researchers and writers have employed different schemes to identify the pieces. Some have used rather arbitrary letters or numbers.
Some folks, however, have devised more systematic schemes, employing a mathematical calculation based on assignments of binary values to "cubies" (or "cubelets") to be removed from the unnotched basic block.
use Jurg von Kanel's numbering system and I have adapted some of the ASCII character piece diagrams below from his documents.
To map my ID to Ishino's scheme, subtract 1 from my ID. For symmetric pieces without a mirror image, this gives Ishino's ID. For pieces that have a mirror image, the result gives Ishino's ID for the mirror image piece
A piece ID is 1 plus the value, shown below, of each cubie removed.
The cubies behind cubies 256 and 512 can be removed, too,
and have respective values 1024 and 2048.
Such pieces appear infrequently.

When trying to identify an arbitrary piece, rotate it about its long axis (and maybe flip it end-for-end)
until you find an orientation where the cubies marked 'a' and 'b' and the cubies behind them are present.
Sometimes a piece could be assigned more than one number -
use the smaller number.
This entails orienting it so that cubies 1024 and 2048 are present if possible.
I created a "Burr ID Tool" in JavaScript which will display an ASCII character picture of any given burr - you just check off the particular cubies that are present in the piece.
(These character-based renderings rely on fixed-width fonts and won't display well on some devices, particularly phones - at some point Ill have to create images for the pieces.)

Open the Bur ID Tool Window

The 25 Notchable Pieces Used in Solid Burrs
Shown below is the set of 25 notchable pieces used in solid burrs. These are depicted as length-6; for longer pieces simply extend the 2×2 solid burr equally on each end.

- The first number is the piece ID as described above
- The first letter, in bold, is the "standard" letter ID for the piece, and is used in Pentangle's set
- The second letter is as assigned by Curfs and is also used in Wayne Daniel's (i.e. the Interlocking Puzzles or "IP") set
- The third letter, if present, is that assigned by Edwin Wyatt in Puzzles in Wood.
- A 'p' suffix indicates the piece is included in the Professor burr set.
- The last number is the usual count of this piece in a 42-piece set that allows you to construct 314 solid burrs.

I have lately given names to some of the pieces, which I find more helpful than the letters or numbers when trying to remember sets of pieces I have seen before.
Piece \#1 is the "key" piece. No more than one Key appears in any puzzle. Also, when the key \#1 is used, neither \#18 nor \#35 can be used in the same puzzle with it. (Can you tell why?) Piece 1024 (Y) is the "minimal" piece no more material can be removed without the piece falling apart.
I have located some of the pieces out of numerical sequence, to show related pieces together.

Selected Other Burr Pieces

The following are only a small selection of additional pieces (or 'non- 25 ' pieces - i.e. pieces not in the set of 25 given above), used in some of the burrs mentioned below, where they will be highlighted like this.

In this table, notchable pieces will have an \mathbf{N} after the ID\#, non-notchable but millable pieces will have an \mathbf{M}.
Many of these pieces have internal corners and are more difficult to manufacture. Remember, there are 837 pieces in total - if you want to see them all, you'd best visit Ishino's site - though Ishino uses a different numbering cheme.
The pieces are in numerical order from top down left to right, but I show mirror image pairs together using an arbitrary color.
have added the 20 non- 25 pieces from the 27-piece Ultimate Burr Set - they're labeled UBS. n where n is the piece number as given within the set.
The UBS set includes 7 of the 25 pieces above (shown as 'UBS number = my ID'):
$0=1,25=188,9=256,10=928,5=1024,7 / 6=960 / 992$
I have also included the 20 non- 25 pieces from the 35-piece Interlocking Puzzles Level-5 Set - they're labeled IPL5S. n and again n is the piece number as given within the set The IPL5 set includes 15 of the 25 pieces above (shown as 'IPL5 number $=m y$ ID')
$46=103,22=120,56=154,26=188,00=256,35=928,01=1024,30 / 08=824 / 975,09 / 29=856 / 943,03 / 02=888 / 1007,28 / 07=960 / 992$

	Triple Slide				
	BCL6000				
	Avenger (p. \#4)	Triple Slide			

Some Common Six-Piece Burr Designs
I have noticed the following four designs recur over and over again in different products.
It should be fairly easy for you to find contemporary examples using these pieces, and these four burr puzzles are a reasonable introduction to the category.
The Diabolical Structure

This set of pieces appeared in a French puzzle (I don't have) called "Charpente Diabolique" (the Diabolical
Structure). The pieces include: $1,3 \times 256$, and 2×928 (AJ-VV-JJ or ALLXXX). The colorful burr on the right I have from "Melissa \& Doug" uses the same set. It is very easy to construct - in fact this is possibly the easiest of

\qquad
\qquad
\square

教
\qquad

\square
\square
\square

\qquad
\square
\square

號

Chadwick Miller and dated 1969．It came with a small black case with a
chadwick Miller and dated 1969．It came with a
question mark on the front．

is in fact not constructible．This is a good illustration of what is meant by an apparent assem

$+--+$

\qquad $+,---+$

\square
\square
\square
no \square
e le

\square

\qquad

－left offset 824，right wall 911 －this seems like it fits together，but is in fact not constructible．This is a good illustration of what is meant by an apparent assembly．

The Tomato Block
The Tomato Block

The Yamato Block
The Yamato Block

This is Bill Cutler＇s Computer＇s Choice Unique 10 burr．I don＇t know who the

This is called The Baffling Burr Puzzle（＂Six interlocked pieces of wood that will challenge the experts＂）－there is no other information on the box．This has pieces numbers $52,615,792$ 960／992， 975 and is Bill Cutler＇s \＃305，not Bill＇s Baffli Burr，which has pieces $103,760,960 / 992$ ，996， 1024

Toys From Times Past Burr Puzzle（Hoffmann Burr）

This small black plastic burr I found in a puzzle shop in Prague during 1PP28 is a copy of the Philippe Dubois／Gaby Games burr that requires 6 （or 7，depending on how you count）moves to release the first piece．It is one of ，which has pieces 103，760，960／992，996， 1024

\qquad
\qquad

號

The Y

[^0]而
$$
5-2-2=2
$$

．

－
正 ，

20
\qquad

（

\square
\square

\square
 （

號

length－8，however，not length－6．


```
[
```

```
\[
\text { тр. } 9 \text { из } 76
\]
\[
>
\]
```

$$
5
$$

```
```

路
路

```
\(\square\)
\(\square\)



This set of twelve pieces is called the " \(6+6=\) Cube." It was designed by Kozy Kitajima. The pieces include: \(1,52,103,120,188,256,911,928,992,960\), two burrs at once. The twelve pieces can also be combined to form a cube, with holes. with holes.

G4 or "The Cross of Marseille"


This burr's wooden length-12 pieces are stained a dark color. The burr comes in a box with a fitted slip-out cover. At some point I saw it referred to as "G4," also as "The Cross of mirror images of the 3rd-5th can also be used \(1,188,768\). The mirror ima
824,1024 .


The Avenger


The Avenger is offered by PuzzleMaster.ca. It includes
9 length-10 pieces, one of which (their \#1) is not
9 length-10 pieces, one of which (their \#1) is not
traditionally notched. Subsets of the pieces can be
assembled into six-piece, seven-piece, eight-piece, and nine-piece burrs. The pieces are:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline non trad. & 896 & 928 & 240 & 1024 & 768 & 984 & 960 & 1933 \\
\hline
\end{tabular}
For the six-piece assembly the pieces used are: 240 , 768, 960, 984, 1024, 1933.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(1 \mathrm{~A} \mathrm{~A} \mathrm{[p]}\) & 154 H K I [p] 1 & 256 J X B [p2] 3 & 256 J X B [p2] 3 & 1024 Y Y [p2] & 1024 Y Y [p2] \\
\hline  &  &  &  &  &  \\
\hline The Key & The Toaster & The Tray & The Tray & The Y & The Y \\
\hline
\end{tabular}
Kozy Kitajima's 6+6=Cube
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  &  &  &  &  \\
\hline  &  &  & The Tongue &  &  \\
\hline
\end{tabular}






正

\[
)
\]






I have not reproduced all 73 designs here, but I highlight Filipiak designs like this.
Several of the designs in his list of 73 puzzles, when I checked using Jurg's applet, have no solution - maybe the wrong pieces were listed, or as noted below, the actual configuration of the pieces themsel are open to interpretation. Or, perhaps Filipiak himself hadn't bothered to actually construct all of the designs - but that seems unlikely given his enthusiasm. I cannot imagine that his editor could have

Wayne Daniel, and Pentangle, both at one point offered sets of 42, but they're not being produced any more as far as I know. Dick Wetters also offered sets, but he, too, has stopped.

\section*{Catalogue of Burrs to Try}

This section gives a list of burrs to try once you have a set (or can make your own pieces, for example from LiveCube or Lego). I've included solid and holey designs. There are several sources that give the full list of all 314 olid burrs that can be produced with the set of 42 notchable pieces, including Slocum and Botermans' 1987 Puzzles Old and New. That list of 314 puzzles contains multiple entries for a set of six pieces when that set can go together in different ways, so there are not actually 314 unique six-piece sets. I have folded all the sets represented by those 314 puzzles into my list. I have tried to catalogue interesting puzzles I've run across and give their names or designers when I know them.

The catalgoue below is ordered by piece number - with the six pieces sorted by number, lowest first. Mirror pair pieces are listed together. I have color-coded the pieces per my guide tables above, to try to make it easier to see how the designs may be related. In addition...
- pieces highlighted in this color are from the table of additional pieces. Of these, the pieces \(512 / 768\) are used frequently and are specially highlighted. If a burr's piece list does not contain any pieces highlighted like this, then it (most likely) can be constructed using the set of 42 notchable pieces.
- Puzzles highlighted like this are the four common designs.
- Puzzles highlighted like this can be made with the Professor/Professional Puzzle set.
- Puzzles highlighted like this are the "Fearsome Four."
- Puzzles highlighted like this are the "Fearsome Four."
- Puzzles highlighted like this are a small selection of Bill Cutler's designs. (Bill gives lists of "holey" burr designs, and other burr designs on his site.)
- Puzzles highlighted like this are mentioned on Bruno Curfs' site.

Mig- Pu
- Puzzles highlighted like this are ranked easiest by Curfs. You might use these to introduce a beginner or a child to this category. Incidentally, Curfs, Coffin, and Cutler rate Cutler's \#306 as the most difficult of the notchable solid burrs.
- Puzzles highlighted like this are Jurg vo Kanel designs.
- Puzzles highlighted like this are Peter Roesler's designs.
- Puzzles highlighted like this are David Winkler's designs.
- Puzzles highlighted like this are Keiichiro Ishino's designs. Ishino offers extensive analysis of the six-piece burr (as well as many other puzzles), giving catalogues of pieces and of designs. He lists many of the puzzles listed here, too.
- Puzzles highlighted like this are the 15 burrs described by Edwin Wyatt in his 1928 classic Puzzles in Wood.
- Puzzles highlighted like this are among the oldest documented




all of which are notchable.


The book Puzzles in Wood, written by Edwin M. Wyatt, was published in 1928 by the Bruce Publishing
Company. Wyatt includes a section on the six pion
company. Wyatt includes a section on the six piece burr, shows clear plans for 13 pieces he labels A through M,
\[
x^{2}+x_{2}
\]
\(\qquad\)

(

Known combinations:
1. \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{A}\).
2. E, C, F, G, F, and A.
3. J, F, M, F, F, A.
4. \(B, B, M, F, F, A\).
5. I, B, B, F, F, A.
6. J, D, F, B, F, A.
7. I, K, F, F, F, A.
8. F, F, B, D, H, A.
9. J, H, F, F, and J, K.
10. J, H, F, F, and J, K.

With invisible hollow spaces within:
11. E, J, F, F, F, A.
12. M, B, F, B, F, A
13. J, F, F, B, F, A.
14. M, B, E, F, F, A.
15. J, G, F, B and B and I or F (no key).
15. J, G, F, B and B and I or F (no key).
a. J, D, \(\mathrm{F}, \mathrm{B}, \mathrm{F}, \mathrm{A}\).
as published in 1942 by A. S. Barnes and Company. In his book, Filipiak includes a section on the "Six Piece







\section*{}

Se
ar

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Filipiak's pieces correspond to:} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1 & 18 & 52 & 256 & 154 & 188 & 1024 & 928 & 871 & 911? (463?) \\
\hline 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 792 & 975 & 824 & 512 & 768 & 1016 & 1023 & 1015 & 760 & 511 \\
\hline 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 992 & 960 & 564? & 788 & 820 & 973 & 927 & 359 & 615 & 461? \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & & \\
\hline 909 & 35 ? & 920 & 20 & 103 & 1007 & 888 & 120 & & \\
\hline
\end{tabular}

Filipiak's notes seem to contain several errors: his pieces \#2 and \#32 appear to be duplicates of what I call \#18, although his \#32 might be my \#35; his \#10 as drawn equals my \#463, but that interpretation results in several of Filipiak's designs having no solution - from its position in his list it might be a mistaken drawing of my \#911, the complement to its neighbor \#11 which is my \#792.
Filipiak missed pieces \#35 and \#86, but there are only 3 uses of \#35 among the 314 solid burrs, and few of \(\# 86\). He also missed the pair 856/943, but neither of those are used often, either.

All of the pieces in his set highlighted like this are used in only 6 of his burrs! The mirror pair \(512 / 768\) is used only once, in his burr \#63.

Anyway, herewith \(m y\) list, also "collected the world over!"

49. \(1,188,792,888,1024\) x2
50. \(1,188,824,888\) or \(1007,992,1024\)
51. \(1,188,824 / 975,1024 \times 2\)
52. \(1,188,871,928,1024 \mathrm{x} 2\)
53. \(1,188,871,960 / 992,1024\)
54. 1, 188, 888 or \(1007,960,975,1024\)
55. 1, 188, 911, 1007, \(1024 \times 2\)
56. \(1,208,256,670,1024 \times 2\)
57. \(1,256 \times 3,928 \times 2\)
58. \(1,256 \mathrm{x} 2,792\) or \(911,928,1024\)
59. \(1,256 \times 2,792\) or \(911,960 / 992\)
60. 1, 256, 792 x2 or 911 x2, 1024 x2
61. 1, 256, 792 or \(911,824,992,1024\)
62. [[ \(1,256,792\) or \(911,975,992,1024]]\)
63. 1, 256, 792, 928, 1007, 1024
64. 1, 256, 792 or 911, \(960,975,1024\)
65. 1, 256, 792, 960/992, 1007
66. 1, 256, 820, 928, 1007, 1024
67. \(1,256,824 \times 2,992 \times 2\)
68. 1, 256, 824/975, 928, 1024

1921, for these on a string
69. 1, 256, 824, 928, 992, 1007
70. 1, 256, 824/975, 960/992
71. 1, 256, 888, 911, 928, 1024
72. 1, 256, 888, 911, 960/992
73. 1, 256, 888, 928, 960, 975
74. 1, 256, 888/1007, 928, 1024
75. [[1, 256, 928, 960, 975, 1007]]
76. \(1,256,960 \times 2,975 \times 2\)
77. \(1,359,824,928,1024\) x2
78. 1, 359, 824, 960/992, 1024
79. \(1,359,888,928,960,1024\)
80. 1, 359, 888, \(960 \times 2,992\)
81. \(1,464,768,800,832,1024\)
82. \(1,615,928,975,1024\) x 2
83. 1, 615, 928, 992, 1007, 1024
84. 1, 615, 960/992, 975, 1024
85. 1, 615, 960, \(992 \times 2,1007\)
86. \(1,792 \mathrm{x} 2,1007,1024 \times 2\)
87. 1, 792 or 911, 824/975, 1024 x2
88. 1, 792, 824, 992, 1007, 1024
89. 1, 792, 856, 960, 1007, 1024
90. 1, 792, 888, 960, 975, 1024
91. 1, \(824 \times 2,975,992,1024\)
92. \(1,824,856,871,1024 \times 2\)
93. 1, 824, 856, 960/992, 1007
94. \(1,824,871,888,992,1024\)
95. 1, 824/975, 888 or 1007, 928, 1024
96. \(1,824 / 975,888\) or \(1007,960 / 992\)
97. 1, 824, 911, 992, 1007, 1024
98. \(1,824,960,975 \times 2,1024\)
99. 1, 856, 871, 888, 960, 1024
100. 1, 871, 888 x2 or \(1007 \times 2,928,1024\)
101. \(1,871,888 \times 2\) or \(1007 \times 2,960 / 992\)
02. \(1,871,943,975,1024\) x2
103. 1, 871, 943, 992, 1007, 1024
04. 1, 871, 960, 975, 1007, 1024
105. 1, 888, \(911 \mathrm{x} 2,1024 \mathrm{x} 2\)
106. \(1,888,911,943,992,1024\)
107. 1, 888, 911, 960, 975, 1024
108. \(1,888,943,960 / 992,975\)
109. \(18 \times 2,256 \times 2,1024 \times 2\)
110. \(18 \times 2,256,888\) or \(1007,1024 \times 2\)
111. \(18 \times 2,512 / 768,1015,1024\)
12. \(18 \times 2,871,1024 \times 3\)
113. \(18 \times 2,888 / 1007,1024 \times 2\)
14. 18, 35, 871, \(1024 \times 3\)
115. \(18,52,103,1024 \times 3\)
116. \(18,52,188,888\) or 1007,1024 x2
117. \(18,52,256 \times 2,928,1024\)
118. \(18,52,256,792\) or 911,1024 x2
19. \(18,52,256,824,992,1024\)
- (solid) 1 soln.
- (solid) 1 soln.
- The Yamato Block Puzzle, Filipiak \#44, Professional Puzzle set \#2. Easy. Also appeared as the "Locked Cross" from New Zealand. Also see U.S. Patent 1350039-Senyk 1920.
- Filipiak \#43, Yamanaka Orange set
- Filipiak \#46-3 solutions
- (solid) 1 soln.
- (solid) 1 soln.
- Tang Yunzhou. Zhongwai xifa tu shuo: e huan huibian (Chinese and Western magic with diagrams: compilation of magic) - Shanghai, 1889
- The Diabolical Structure - possibly the easiest (BC \#1). Filipiak \#13
- Filipiak \#17 (use 911) and Filipiak \#18 (use 792)
- Filipiak \#20 (use 911) and Filipiak \#21 (use 792) - compare to Filipiak \#17/18 and note how the 928+1024 pair replaces the 960/992 pair.
- Filipiak \#30 (use 792) and Filipiak \#31 (use 911) - 1 soln.

B13S. 6 (use 911) - 1 soln.
- Filipiak \#32 (911) and Filipiak \#33 (792) - BOTH no soln. - compare w/ B13S. 6 \& 7
- vintage small brown wooden burr I got from England; see plans for Andromeda at www.craftsmanspace.com, where you can find several puzzle plans for woodworkers.
- B13S. 7 (use 911) - the "mirror image" of B13S. 6
- 1 soln.
- Interlocking keychain puzzle burr from France. 1 soln.
-1 soln.
- Ivory Chinese Cross; Wyatt \#1, Filipiak \#29; "Chinese Puzzle G"; Bell's Maltese Cross keychain; Russian "Admiral Makarov's Puzzle"; Misfit - advertising Phenyo-Caffein; "The Chinese Cross" in The Boy's Own Toymaker by Landells 1859, and in the 1857 Magician's Own Book; see U.S. Patent 1388710 - Hime
- mirror of "Chinese Star"
- Filipiak \#41-2 solutions; B13S. 5
- 1 soln.
- B13S. 8
- Saw this as the "Chinese Star."
- Triple Cross
- Filipiak \#38; no soln for this set, but compare to the "Chinese Star"
- 1 soln.
- 1 soln.
- 2 solns.
- A tricky solid burr I like
- 1 soln.
- Brown's Burr - See U.S. Patent 1225760 - Brown 1917.
-1 soln.
- mirror of the tricky solid burr I like
- 2 solns.
- 1 soln.
- 1 soln.
- "Chinese Puzzle F" (use 792), Wyatt \#2 (use 911), Filipiak \#49, if his \#10 = 911, Filipiak \#50 (use 792)
- mirror of B13S.11-2 solns.
- 1 soln.
- 1 soln.
- 2 solns.
- 1 soln.
- 1 soln.
- 2 solns.
- 1 soln.
- B13S. 9 (use 888)
- B13S. 10
- 2 solns.
- 1 soln.
- 2 solns.
- 1 soln.
- 1 soln.
- B13S. 11
- 1 soln.
- The 3rd easiest burr (BC \#3).
- compare to BC\#3 - substitute either 888 or 1007 for one 256
- Filipiak \#63-1 solution
- contrast with 18,35 below - this shows how 871 can be placed with its crossbar outboard (w/ 18 ) or inboard ( \(\mathrm{w} / 35\) )
- nice symmetry
- one of only 3 uses of piece \#35 among the 314 solid burrs.
- easy
- use 888 or 1007
- 4 apparent assemblies but only 1 solution. Not too tough.
- Wyatt \# 10 (911), Filipiak \#66, if his \#10 = 911
- Professional Puzzle set \#4
120. 18, 52, 256, 888 or 1007, 928,1024
121. 18, \(52,256,888\) or 1007, \(960 / 992\)
122. 18, \(52,256,960,975,1024\)
123. 18, 52, 792, 1007, \(1024 \times 2\)
124. \(18,52,824 / 975,1024 \times 2\)
125. 18, 52, 824, 992, 1007, 1024
126. 18, 52, 856, 960, 1007, 1024
127. \(18,52,871,928,1024 \times 2\)
128. 18, \(52,871,960 / 992,1024\)
129. \(18,52,888,911,1024 \times 2\)
130. 18, \(52,888,943,992,1024\)
131. 18, 52, 888, 960, 975, 1024
132. 18, 86, 871, 960/992, 1024
133. 18, 103, 120, 960/992, 1024
134. 18, 103, 824/975, 1024 x2
135. 18, 103, 824, 992, 1007, 1024
136. 18, 103, 871, 960/992, 1024
137. 18, 103, 888, 960, 975, 1024
138. \(18,120,188 \mathrm{x} 2,1024 \mathrm{x} 2\)
139. \(18,120,188,824,992,1024\)
140. 18, 120, 188, 960, 975, 1024
141. \(18,188,824 / 975,888\) or 1007,1024
142. 18, 256, 792 or 911, 824/975, 1024
143. \(18,359,824,871,1024 \times 2\)
144. \(18,359,824,911,1024\) x2
145. 18, 359, 824, 943, 992, 1024
146. \(18,615,792,975,1024 \times 2\)
147. 18, 615, 856, 960, 975, 1024
148. \(18,615,871,975,1024 \times 2\)
149. 18, 792, 824/975, 1007, 1024
150. 18, 824 x2, 975, 992, 1007
151. 18, 824, \(871 \times 2,992,1024\)
152. 18, 824/975, 888, 911, 1024
153. \(18,824,888,960,975 \times 2\)
154. 18, 871 x2, \(960,975,1024\)
155. 20, 52, 824, 911, 1024 x2
156. \(35,52,871,928\), \(1024 \times 2\)
157. 35, 52, 871, 960/992, 1024
158. 35, 359, 960/992, 975, 1024
159. 35, 975, \(992 \times 2,1024 \times 2\)
160. [[ \(52 \times 2,103,871,1024 \times 2]]\)
161. \(52 \times 2,103,928,1024 \times 2\)
162. \(52 \times 2,103,960 / 992,1024\)
163. 52 x2, 188, 888 or 1007, 928, 1024
164. \(52 \times 2,256 \times 2,928 \times 2\)
165. \(52 \times 2,256,792\) or 911, 928, 1024
166. 52 x2, 256, 792 or 911, 960/992
167. \(52 \times 2,256,824,928,992\)
168. \(52 \times 2,256,928,960,975\)
169. \(52 \times 2,792 / 911,1024 \times 2\)
170. 52 x2, 792, 928, 1007, 1024
171. \(52 \times 2,792,960,975,1024\)
172. \(52 \times 2,792,960 / 992,1007\)
173. \(52 \times 2,824,911,992,1024\)
174. \(52 \times 2,824 / 975,928,1024\)
175. \(52 \times 2,824,928,992,1007\)
176. \(52 \times 2,824 / 975,960 / 992\)
177. 52 x2, 824, 928, 992, 1007
178. \(52 \mathrm{x} 2,856,928,960,1007\)
179. \(52 \times 2,888,911,928,1024\)
180. 52 x2, 888, 911, 960/992
181. 52 x2, 888, 928, 943, 992
182. \(52 \mathrm{x} 2,888,928,960,975\)
183. 52, 56, 792, 975, 928, 1024
184. \(52,86,871,928,960 / 992\)
185. \(52,88,768,888,992,1024\)
186. \(52,103,120,928,960 / 992\)
187. 52, 103, 824/975, 928, 1024
188. \(52,103,824,928,992,1007\)
189. 52, 103, 824/975, 960/992
190. \(52,103,871,928,960 / 992\)
191. \(52,103,888,928,960,975\)
- use 888 or 1007
- use 888 or 1007
- mirror of Professional Puzzle set \#4
-3 solns. \(18+1024,18+1007\) (2 ways)
\(-18+1024\) key, 2 solns.
- 4 solns.
- one of the more interesting solid assemblies featuring an 18+1024 "key" - 1 soln.
- Yamanaka Green set
- 3 solns. - all use \(18+871\) key - compare w/ 18,86 below
-3 solns. \(18+1024,18+888\) (2 ways)
- mirror image of "interesting" one above - 1 soln.
- 4 solns.
- one of only two uses of piece \#86 without the key \#1 among the 314 solid burrs.
- 1 soln.
- 2 solns.
- 1 soln.
- compare w/ 18,86 above
- 1 soln.
- 1 soln.
- 1 soln.
- 1 soln.
- 1 soln
- 2 solns.
- 1 soln.
-1 soln.
- 1 soln.
- 1 soln.
- 1 soln.
- 1 soln
- 2 solns.
- 1 soln.
-1 soln.
- 2 solns.
-1 soln.
- two 871s! - 1 soln.
- Filipiak \#67 - his only use of his piece \#34 / my \#20.
- the second of only 3 uses of piece \#35 among the 314 solid burrs.
- the third of only 3 uses of piece \# 35 among the 314 solid burrs, this set goes together 3 ways.
- EFNOQY discussed by Bruno Curfs
- EOOQYY - Simple Lock
- Wyatt \#9, Filipiak \#64 - NOTE - this set doesn't work - it has too many interior cubes. Why did they both include it?
- (solid) Burr at George Hart's house - contrast with Wyatt \#9 above - this works.
- (solid) 3 solns.
- (solid) 1 soln.
- Another very easy burr - BC \#4
- Yamanaka Yellow set (911)
- 1 soln.
-1 soln.
- 1 soln.
-3 solns.
- 1 soln.
-3 solns.
-1 soln.
- 3 solns.
- 2 solns.
- 1 soln.
- symmetric halves, no holes - contrast with B13S.12, which I think is harder
- 1 soln.
- 1 soln
-1 soln.
- 1 soln.
-1 soln.
- 1 soln.
- "Chinese Puzzle C" (3 solns.)
- the 2nd of only two uses of piece \#86 without the key \#1 among the 314 solid burrs.
- Bill Cutler's BB31-10-40 - the least un-notchable 1-hole level 3
- Kitajima \#2 (no holes)
- 2 solns.
- 1 soln.
- B13S. 12 (no holes)
- LNOPST - 3 assemblies, 1 solution; Bruno Curfs rates this 5 th hardest among the solid notchables. Not too hard once you recognize it has (a) the L\&P
\((52,928)\) "key," (b) typical symmetric arrangement of N\&O (960/992), and (c) T 871 used in its "inside out" mode.
-1 soln.
192. 52, 120, \(188 \times 2,928,1024\)
193. \(52,120,188,824,928,992\)
194. 52, 120, 188, 928, 960, 975
195. [ \(52,154,256 \times 2,911,1024]]\)
196. \(52,188,824 / 975,888\) or 1007,928
197. \(52,256 \times 2,911,1024 \times 2\)
198. \(52,256,792\) or \(911,824 / 975,928\)
199. 52, 256, 888/1007, \(1024 \times 2\)
200. \(52,359,824,\{871\) or 911\(\}, 928,1024\)
201. \(52,359,824,\{871\) or 911\(\}, 960 / 992\)
202. \(52,359,824,928,943,992\)
203. \(52,615,792,871,960 / 992,975\)
204. 52, 615, 792, 928, 975, 1024
205. 52, 615, 792, 960/992, 975
206. 52, 615, 856, 928, 960, 975
207. \(52,615,871,928,975,1024\)
208. \(52,615,871,960 / 992,975\)
209. 52, 792/911, 824/975, 1024
210. \(52,792,824,960,975 \times 2\)
211. 52,824 x2, 911, 975, 992
212. \(52,824,871 \times 2,928,992\)
213. 52, \(871 \mathrm{x} 2,928,960,975\)
214. \(55,508,768,812,960,1023\)
215. 56, 94, 156, 704, 1008, 1024
216. \(56,276,792,832,975,1024\)
217. 63, 480, 512, 766, 896, 1012
218. 72, 112, 448, 511, 990, 1024
219. \(86,160,224,992,957,1016\)
220. 86, 256, 911, 992, 928, 1024
221. \(88,160,512 / 768,992,1008\)
222. \(88,512,704,960 / 992,1008\)
223. 88, 512/768, 922, \(1008 \times 2\)
224. 103, 160, 224, 824, 928, 1024
225. 103, 188, 256, 928, 975, 1024
226. 103, \(256 \times 2,824,928,960\)
227. \(103,256 \times 2,928 \times 2,960\)
228. 103, 256, 412, 824, 928, 1024
229. 103, 256, 911, 960, 1007, 1024
230. 103, \(508 \times 2,824,928,1024\)
231. 103, 760, 960/992, 996, 1024
232. \(109,188,736,928,1008,1024\)
233. 120, 154 x2, 256, 1024 x
234. 120, 154, 188, 928, 1024 x2
235. 120, 154, \(256 \times 2,960 / 992\)
236. 120, 160, 256, 512, 880, 960
237. 120, 188, 670, 928, 992, 1024
238. 120, 188, 792/911, 975, 1024
239. 120, 188, 871, 928 x2, 1024
240. 120, 792/911, 824/975, 992
241. 126, 615, 820, 856, 928, 1024
242. 144, 495, 702, 975, 990, 1024
243. 154, \(256 \times 4,1024\)
244. \(158,[768,824,863,992,1012\)
245. 160, 188, 412, 751, 960, 1024
246. \(160,499,512 / 768,926,1015\)
247. 160, 508, 736, 742, 768, 1015
248. 188, 256, 615, 975, 928, 1024
249. 188, 256, 768, 824/975, 1024
250. 188, 704, \(768 \times 2,928,1007\)
250. \(188,704,768 \times 2,928,1007\)
251. \(192,736,768,976,1007,1008\)
252. \(256 \times 5,992\)
253. 256, 551, 960/992, 992, 928
254. 256, 792/911, 943, 960, 1024
255. 256, 824, 911, 928, 943, 1024
256. 256, 824, 911, 943, 960, 1024
257. 256, 911, 943, 960, 960/992
260. 359/615, 943, 960/992, 1024
96. \(52,188,824 / 975,888\) or 1007,928

103, \(508 \times 2,824,928,1024\)
-1 soln.
-1 soln.
- 1 soln. (mirror of above)
- Filipiak \#65, Wyatt \#15(a) - no solution even if Filipiak's \#10 is 463
- 1 soln.
- Wyatt \#15(b) - 7 solutions
- 2 solns.
- Jurg von Kanel's Burr in a Cube - assemble this inside a cubic cage.
- 1 soln.
- 1 soln.
- 1 soln.
- Gemani's Double Bill (combines Cutler's 305 and 306)
- 1 soln.
- Bill Cutler's No. 305. A nice \(3 \times 3\) slide. gamesandpuzzles.co.uk has it.
- \(52+928\) (DV or PL) makes a 2-piece key
- 1 soln.
- Bill Cutler's No. 306. - Cutler, Coffin, and Curfs say this may be the most difficult notchable solid burr.
- The 6-way (Rainbow). 8 apparent assemblies, 6 solutions. An old one sold as "The Zoozzler." Also the vintage "Mikado." B13S.13
- 2 solns.
- 2 solns.
- 1 soln.
- 1 soln.
- Derwin Brown's Unique Level 6
- Stewart Coffin's Triple Slide
- "Chinese Puzzle D" (1 soln.)
- Curfs BC UL7ooo
- Stewart Coffin's No. 40 Interrupted Slide (1979) - one of the "Fearsome Four"
- JVK \#25.2 derivation
- JVK \#25.2 - a level 3 design which uses piece \#86.
- Edward Hordern's modification to Peter Marineau's Piston Burr - 13 solutions, one at level 10
- Bruce Love's Dozen. The only burr at the highest level, 12. There are 89 ways to put it together, but most of them don't achieve level 12 .
- Peter Marineau's Piston Burr - The highest level, 9, with a unique solution.
- Ishino's Millable 5.4
- Jurg von Kanel's jvk25.1 - Note: the notch in piece \#256 (X) in my copy of the Wayne Daniel burr set is too short and prevents piece \#975 (Q) from being
removed, so this one cannot be constructed using the set.
- LNRSXX - unique level-5 solution, discussed by Bruno Curfs
- LLNSXX - unique level-5 solution, discussed by Bruno Curfs
- Jurg von Kanel's favorite notchable burr
- \(\mathbf{B 1 3} \mathbf{H} .1\)
- David Winkler's favorite level 5.4 Millable burr
- Bill's Baffling Burr; Gemani's Deadlock - 5 moves to release the 1st piece. One of the "Fearsome Four."
- Bruno Curfs' BC L6000 - nice, 6 moves to free the 1st piece
- Ishino's Notchable 5 -Moves 2-Hole - (a set of 42 does not have \(2 \times 154\) ) Note: again, the problem with \#256 in the Wayne Daniel set prevents this
construction.
- KLMUYY can be made with the set of 42
- KNOUXX - only multiple level-5 solutions
- Philippe Dubois/Gaby Games - 6 moves to release the 1st piece. One of the "Fearsome Four." Also Arjeu CT757.
- David Winkler's favorite 5.4
- Ishino's Notchable 2-Moves 1-Hole \#3
- Tumult - try to find the level 7 solution.
- Bill Cutler's Notchable 1-Hole Level 2 - uses only notchable pieces and has only one void - 4 solutions, one at level 2 .
- Stewart Coffin's No. 36 Improved Burr (1979) - One of the "Fearsome Four."
- Abad's Level 5.7 Improved Burr
- U.S. Patent 1542148 - Kramariuk 1925.
- Curfs BC UL5000
- Ishino's Millable Unique 5.4.2-Moves 4-Hole
- Bill Cutler's Computer's Choice 5-Hole
- Abad's Level 9 Burr
- GLMQXY - this one works like JVK 25.1
- Old black Treen Burr seen on antiques site - level 3, 2 solns. (assuming it uses pc \#256 rather than 1)
- Ishino's Notchable Unique Impossible Length 10-1 solution at length 8, none at length 10
- Peter Roesler's \#G
- David Winkler's Level 3 - use either of the Fingers 960/992, or 928.
- Bill Cutler's L5 Notchable - one of 139 designs using only notchable length- 6 pieces and having a unique solution
- Curfs mentions CDINXY and rates this the third hardest (UL4 \#3) of the five level-4 puzzles with unique solutions among the holey burrs constructible using the notchable pieces.
- Curfs mentions CINRXY and rates this the second hardest (UL4 \#2) of the five level-4 puzzles with unique solutions among the holey burrs constructible using the notchable pieces. This one works with the Wayne Daniel set and has nice dead-ends.
- Curfs mentions CI LRXY and rates this the fourth hardest (UL4 \#4) of the five level-4 puzzles with unique solutions among the holey burrs constructible
using the notchable pieces.
- Curfs mentions CINNOX - this gets his "beauty prize" and rates fifth hardest (UL4 \#5) of the five level-4 puzzles with unique solutions among the holey burrs constructible using the notchable pieces. Works with the Wayne Daniel set.
- Bill Cutler's Computer's Choice 3-Hole (Level 7 unique soln) - of 2.5 billion 3-hole assemblies, 198 have level-7 solutions and of those 157 have unique solutions
- Abad's Level 4 Ambiguous Burr (maybe try using 992 instead of 990 ?)
- Bruno Curfs' FGINOY - you can sub. 856 (J) for 943 (I) - 156 apparent, 4 level 2.2 solns
261. \(359,871,943,928,1007,1024\)
262. 412, 512, 480/704, 704, 960
263. 412/670, 687, 1007, 1024x2
264. 416/672, 448, 848, 983,1024
265. 416, 512, 856, 960, 1013, 1015
266. \(448 / 736,512,743,880,1015\)
267. 463, 564, 760, 909, 927, 1016
268. 480, 511, 512, 989, 1015, 1023
269. 509, 511, 792 x2, 788, 1023
270. 512, 476, 757, 956, 1021, 1024
271. 512, \(734,871,928 \times 2,1007\)
272. 624, 702, 768, 883, 1015, 1024
273. 702, 768, 869, 944, 1015, 1024
274. 737, 871, 928, 956, 1000, 1024
275. 792/911, 824/975 x2
276. 824, 911, 960/992, 1007, 1024
277. 856, 871, 911, 960/992, 1024
278. 871, 911, 943, 960, 1007, 1024
.


Bruno Curfs' Monster FILTVY - unique level 3 soln, 36 apparent - may be the most difficult notchable holey burr
- XSOHO Burr - use length-8 pieces for a single level 4.6 solution
- Level 5.3 "Big Burr"
- Peter Roesler's \#C
- Curfs BC UL600o
- Tenyo Brother; also Filipiak \#72, if his \#10 = 463
- Peter Roesler's \#D
- Filipiak \#73 MODIFIED by me
- Bill Cutler's Programmer's Nightmare - requires a rotational move! (Use length-8 pieces.)
- Lee Krasnow's Burr - 1 soln. @ 4.6
- Bill Cutler's Computer's Choice Unique 10 (CCU10). Use length-8 pieces. Maybe the hardest burr overall?
- Brian Young's Mega Six - a derivative of Cutler's CCU1o
- Bill Cutler's Computer's Choice 4-Hole (Level 8 unique soln) - of 4.7 billion 4-hole assemblies, 15 are level- 8 and of those 13 have unique solutions Filipiak \#71-3 solutions.
- B13H. 2
- Bill Cutler's Bin Cross - presented by Toyo as length-8 pieces which must be assembled inside a slotted glass cage
- David Winkler's complex 5-4-1 solution but 143 apparent assemblies, the most for length- 6 notchable. (All of these pieces are actually notchable.)

There are plenty of burr puzzles for sale out there - for example
- Bill Cutler offers several.
- Mr. Puzzle Australia offers several
- Mr. Puzzle Australia offers seve
- Gemani Games carries some.
- Little Devil at PottyPuzzles
- Acesix by Michael Toulouza
- Toys From Times Past



















35, 975, \(992 \times 2,1024 \times 2\)
 120, 154, 188, 928, 1024 x2

188, 256, 615, 975, 928, 1024
- KNOUXX has only multiple level-5 solutions.

120, 154, \(256 \times 2,960 / 992\)
 some pieces which are not notachable.) Likewise for the pairs 2 and 8, and 9 and 10


 120, \(154,256 \times 2,96\)










\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 1 and 3 & 2 and 8 & 4 & 5 & 6 & 7 & 9 and 10 \\
\hline P1 & - & x & \(\bullet\) & x & \(\bullet\) & x & \(\bullet\) \\
\hline P2 & x & \(\bullet\) & x & \(\bullet\) & x & \(\bullet\) & x \\
\hline P3 & x & - & x & x & - & \(\bullet\) & x \\
\hline P4 & \(\bullet\) & x & \(\bullet\) & - & x & x & x \\
\hline \[
\begin{array}{|c|}
\hline \text { P5 }_{5} \\
\text { (opp. key) }
\end{array}
\] & x & x & \(\bullet\) & - & - & - & - \\
\hline
\end{tabular}




assemblies, and features many well-known cities and well-traveled routes. Cutler's satellite view has identified several impressive peaks in the larger world beyond, and much ground
remains unexplored.
- GLMQXY works like Jurg von Kanel's 25.1. It has two level-5 solutions, which differ by only the orientation of one piece.

two level-5 solutions, which difter by only the orientation of one piece.



are plenty of burr puzzles for s a

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline P 5 plus & (none) & 5 & 7 & \((5\), & (5,7) & \((9,10)\) & \begin{tabular}{l}
\((4,5,9,10)\) \\
\((6,7,9,10)\)
\end{tabular} & \((4,5,6,7,9,10)\) \\
\hline equals & Y & W & X & V & J & I & H \\
\hline
\end{tabular}

Note that, given the chosen orientation, P5 cannot include 4 or 6 without including 9 and 10 - they would be hanging off in space unsupported.
So, what's wrong with this analysis? It gives an incomplete list of possible pieces for \(\mathrm{P}_{5}\) ! Missing are: \(\mathbf{E}, \mathbf{G}, \mathbf{Q}, \mathbf{U}, \mathbf{P}\), and \(\mathbf{S}\). Why? It is a consequence of my original arbitrary orientation of the Y pieces. P5 has access to two additional cubies on each end, provided two things happen:
- either P1 or P2 must be reversed so its notch is on the other side
either P3 or P4 (but not both) must be piece M
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline P5 plus & (none) & 5 & 7 & \((5,7)\) & \((9,10)\) & \begin{tabular}{l}
\((4,5,9,90)\) \\
\((6,7,9,10)\)
\end{tabular} & \((4,5,6,7,9,10)\) \\
\hline \hline equals & Y & W & X & V & J & I & H \\
\hline \begin{tabular}{|l|c|l|l|l|l|l|}
\hline plus 2 \\
equals
\end{tabular} & Q or U & S & P & not possible & G & E & not possible \\
\hline
\end{tabular}

The two extras have to be taken on the same side the M piece will be placed - they cannot come one from each side since that results in internal corners again. This is only possible due to the symmetric nature of piece \(M\), which allows its crossbar to be fitted inboard of where crossbars normally go. If you try this with my LiveCube pieces described above, some of the yellow "internal" cubies of the \(M\) piece will show on the outsid due to the necessary rotation.

For puzzles using the key piece A , piece M can never appear more than once.

Here is a list of the 17 configurations employing one of \(\mathbf{E , G , Q}, \mathbf{U}, \mathbf{P}\), or \(\mathbf{S}\) opposite \(A\). All require an \(M\).
1. AE-YM-YY
(There is only one AE since E uses 6 of 10 available floating cubies, and \(M\) the other 4 , demanding that all the rest be \(Y\) pieces.)
2. \(\mathrm{AG}-\mathrm{VM}-\mathrm{YY}\)
3. AG-WM-YX
4. AG-XM-WY
5. AG-YM-WX
6. \(\mathrm{AQ}-\mathrm{VM}-\mathrm{QY}\)
7. AQ-WM-QX
8. \(A Q-X M-O Y\)
9. AQ-YM-OX

There are only 5 other configurations that use M - these do not require its otation. All are very easy.
1. AH-YM-YY
2. AI-VM-YY

These are three solutions for the same pieces:
3. AI-WM-YX
4. AI-XM-WY
5. AI-YM-WX

Let's look at how the remainder of the 158 configurations break out based on the choice for \(\mathrm{P}_{5}\). One would assume, the more floating cubies used by \(\mathrm{P}_{5}\), the fewer associated configurations.
The fewest should occur when \(P_{5}=H\), using 6 of the 10 . One might think the remaining 4 could be split as follows: \(4 / 0 / 0 / 0,3 / 1 / 0 / 0,2 / 2 / 0 / 0,2 / 1 / 1 / 0,1 / 1 / 1 / 1\). However, \(P_{5}\) as \(H\) has used \(4,5,6,7,9\), and 10 , leaving the pairs \(1 / 3\) and \(2 / 8\) which cannot be split. This means only \(4 / 0 / 0 / 0\) and \(2 / 2 / 0 / 0\) are possible divisions. We've already seen AH-YM-YY; the M uses the remaining 4 , requiring 3 Y pieces

\section*{There are only 4 AH configurations, as follows.}
1. \(\mathrm{AH}-\mathrm{YM}-\mathrm{YY}(4 / \mathrm{o} / \mathrm{o} / \mathrm{o})\) - both pairs part of same horizontal piece M
(Note: making each pair part of a different horizontal piece \(\mathrm{P}_{3}=\mathrm{U}\) and \(\mathrm{P}_{4}=\mathrm{U}\) makes the burr impossible to construct!)
2. AH-YQ-JY (2/2/o/o) - one pair to a horizontal piece and one pair to a vertical piece
3. AH-YU-YJ ( \(2 / 2 / \mathrm{o} / \mathrm{o}\) ) - mirror image of above
4. AH-YY-JJ ( \(2 / 2 / \mathrm{o} / \mathrm{o}\) ) - both to vertical

The next smallest class should be the AI configurations. The I piece used 4 out of 10 , leaving \(6.1 / 3\) and \(2 / 8\) still must be assigned as pairs, but 4 and 5 can be independently allocated to different pieces. The possibilities: 6/0/0/0, 4/2/0/0, 4/1/1/0, 3/2/1/0, 2/2/2/0, 2/2/1/1.
There are 16 AI configurations as follows:
1. AI-QN-YY (4/2/0/0) both horizontals, \(1 / 3\) and \(2 / 8\) separated
2. AI-QO-XY \((3 / 2 / 1 / 0)\)
. AI-UR-YY mirror of QN
4. AI-UT-YW (3/2/1/o)
5. AI-VM-YY \((4 / 2 / \mathrm{O} / \mathrm{O})\)
7. AI-VU-YJ mirror of VQ
8. AI-WM-YX \((4 / 1 / 1 / 0)\)
9. AI-WQ-JX \((2 / 2 / 1 / 1)\)
10. AI-XM-WY ( \(4 / 1 / 1 / \mathrm{o}\) ) mirror of WM
11. AI-XU-WJ \((2 / 2 / 1 / 1)\)
12. AI-YF-YY ( \(6 / 0 / \mathrm{o} / \mathrm{o}\) ) an anomaly with inside cubies showing
13. AI-YM-WX ( \(4 / 1 / 1 / \mathrm{o}\) ) same pieces as WM-YX above
14. AI-YN-JY (4/2/o/o)
5. AI-YR-YJ ( \(4 / 2 / \mathrm{o} / \mathrm{o}\) ) mirror of YN
16. AI-YV-JJ (2/2/2/0)

\section*{\(\sigma\) uses only 2 , leaving 8 - the pairs \(1 / 3,2 / 8\), and \(9 / 10\), and 4 and 6 .}

\section*{The 16 AV configurations:}
1. AV-QO-YT (3/3/2/0)
. AV-UT-OY mirror of QO
AV-WK-QY (5/2/1/0)
AV-WP-GY \((4 / 3 / 1 / 0)\)
AV-XL-YU ( \(5 / 2 / 1 / \mathrm{o}\) ) - a little tricky
. AV-XO-JU ( \(3 / 2 / 2 / 1\) )
AV-XS-YG ( \(4 / 3 / 1 / 0\) )
. AV-XW-JG \((4 / 2 / 1 / 1)\)
10. AV-YK-OY ( \(5 / 3 / \mathrm{/o} / \mathrm{o}\) )
11. AV-YL-YT ( \(5 / 3 / \mathrm{o} / \mathrm{o}\) )
12. AV-YO-JT ( \(3 / 3 / 2 / 0\) )
13. AV-YQ-DY ( \(6 / 2 / \mathrm{O} / \mathrm{o}\) )
14. AV-YT-OJ ( \(3 / 3 / 2 / 0\) ) - very common design (red, licorice stix, pendant)
15. AVYY-YD (6/2/0/0)

Not yet shown: AJ (21), AW (24), AX (24), AY (36)
And that leaves the 156 configurations that don't use the key piece \#1.

\section*{Traditional 18-piece Burrs}


\section*{This section is about the "Traditional" 18-piece Burr.}

This type of burr can be visualized as having a 6 -piece burr shape at its core, but instead of \(2 \times 2 \times 2\) pieces crossing, it has \(6 \times 6 \times 6\). Each group of 6 pieces along an axis is arranged in a \(2 \times 3\) block. The minimum length of a piece is 8 units - pieces are typically \(2 \times 2 \times 8\).
Willem van der Poel seems to have designed the first 18-piece \(6 \times 6 \times 6\) burr, in 1951-1953 - this type of burr is a much more recent development than the Traditional 6-piece Burr. In this case, "traditional" refers to the canonical 6x6x6 shape rather than hinting at any deep (Other shes or arrangements of 18 pieces are possible.) Van der Poel's burr is known as the Grandfather \(6 \times 6 \times 618\)-piece bur The Grandfather burr is discussed on Pete Roesler's site, where you can read a brief history written by van der Poel. Willem made a copy by hand from Beech wood - that copy is now in Jerry Slocum's collection. Willem's design is level 3.2.4.1.1.2.

Ishino has a catalogue of length- 8 pieces here. I shino also has a selection of 18 -piece burr designs, and a table of some designs, listed with piece codes. The burr diagrams used below are Ishino's.
As discussed in the section on Traditional 6-piece Burrs, Bill Cutler completely analyzed those. However, as of this writing in Feb. 2011, no-one has yet performed an analysis for the Traditional 18-piece Burr.
In van Delft and Botermans' Creative Puzzles of the World, van der Poel's puzzle is shown on page 71. In Slocum and Botermans' Puzzles Old and New, plans for an 18 -piece burr are shown on page 71 - Ishino calls this one Unnamed 18 Piece Burr \#1. Its pieces are length 10 (Maybe designed by Gillett as noted in this thread on the PuzzleWorld forums?)

Frans de Vreugd is a notable collector with an interest in high-level burrs - Frans has published nice articles on the topic in CFF \#80 (Nov. 2009) Recent 18-Piece Burrs, and CFF \#82 (July 2010) More 18-Piece Burrs, as well as an article in the book A Lifetime of Puzzles: A Collection of Puzzles in Honor of Martin Gardner's 90th Birthday - Extreme Puzzles on p. 195

At the higher levels, even disassembly is a challenge. Re-assembly without instructions becomes almost impossible.
Guillaume Largounez posted an interesting account of his attempts to construct and solve the most difficult 18 piece burrs, at the PuzzleWorld Forums. His conclusions are in this post.
Some quotes from Guillaume:
- "Most of these puzzles propose a disassembling challenge only. The puzzle is given assembled, and the goal is to find the way to take the pieces apart. In all these puzzles, the sequence of moves is not trivial. This is not
'one move allows the next one, that allows the next one etc.' There are choices to be made. A random exploration of possibilities may be enough to find the solution of the disassembling challenge, but not always."
- "I think that in order to maximize enjoyment, and [offer] an assembling challenge in addition to the disassembling one, 18 -pieces burrs designs should have only one possible solution, but also one possible assembly
and no more."
- "Among [the commercially available puzzles], Condor's Peeper ... gives the real enjoyable feeling of high level 18 -pieces burrs. It is something similar both to labyrinths, and chess game. Like in labyrinths, you explore paths, with crossings, where you have to choose between two or more ways to go on, without knowing which is the right one. Some ways seem to bring you closer to the exit, but things are not always what they seem. You find many dead en"
lost, this is like a chess game."
 -都

 


－

號


\(\square\)

\(\square\)

\section*{}

\section*{Kumiki Burrs}


Richard Whiting＇s website offers a solution to the 24 －piece Woodchuck．（The knock－off versions are called＂Crystal＂puzzles but that is a misnomer．）

Here is a Chuck burr made from Maple and Walnut by craftsman Colin Gaughran，who has a shop in Lyme，Connecticut．

The Arjeu CT1102，the 51－piece Pagoda from Bits \＆Pieces，and the Miyako puzzles are examples of＂Pagoda＂or ＂Japanese Crystal＂burrs．（Note that the Tower of Hanoi puzzle is sometimes called the Pagoda puzzle－but here were talking about burrs．）You can see the pieces for several sizes of Pagoda puzzle at Ishino＇s Puzzle Will Be Played．．．website． Peter Kaldeway＇s website also had a nice page on pagoda burrs． A nineteen－piece Pagoda（and a similar 15－piece puzzle）are described in Wyatt＇s 1928 Puzzles in Wood on pages 33－37．Plans
for a 51 －piece Japanese Crystal are given in van Delft and Botermans＇1978 Creative Puzzles of the World on pages 77－79． A nineteen－piece Pagoda（and a similar 15－piece puzzle）are described in Wyatt＇s 1928 Puzzles in Wood on pages 33－37．Plans
for a 51－piece Japanese Crystal are given in van Deft and Botermans＇ 1978 Creative Puzzles of the World on pages \(77-79\) ． Slocum and Botermans describe The Great Pagoda puzzle in their 1986 book Puzzles Old and New on page 73 ．They state that the simplest has only three pieces．Larger versions then have \(9,19,33,51,73,99\) ，and 129 pieces．In general，the \(\mathrm{n}^{\text {th }}\) degree pagoda requires \(2 n^{2}+1\) pieces．

The 3 －piece version requires a rotating piece．I made a Lego 3 －piece version shown on Brickshelf．The tiny Miyako puzzle is a 9 －piece pagoda and does not require a rotation．You can see more Lego versions at Marten

Last time I checked，you could buy a 129－piece pagoda from Cleverwood，where you can also find smaller sizes for sale．Creativecrafthouse．com sells 99 －piece and 51 －piece versions．

\section*{The Altekruse Puzzle and Variants}

In 1890，William Altekruse patented（430502）an interlocking puzzle now known as the Altekruse Puzzle．You can read about the Altekruse puzzle in Stewart Coffin＇s The Puzzling World of Polyhedral Dissections．Many variations have been made．The Altekruse can be made with 12 or 14 pieces．Pentangle offers a 14－piece version called Hybrid，and a 12－piece version called Holey Cross．See a solution online at Casse－Tete et Solution．


The tiny Miyako puzzle is a 9 －piece pagoda and does not require a rotation．You can see more Lego versions at Marten rid，and a


－
．


\author{

}


The Peon Molecule by Skor－Mor is a plastic，modern－looking version．
I managed to find 3 separate copies－one is all blue，one is red／white／bue，and the third is red／yellow／blue． One of them even came with a solution sheet．On two of them，some of the pieces had broken fins，but the bits
were included and I was able to glue them back together．

The vintage 12－piece Panel Puzzle by Adams is also a version of the Altekruse．This is also called the＂Block
Puzzle Senior．＂（I have a Panel Puzzle in the package，and a loose Block Puzzle Senior．） \(\qquad\)

\section*{Chuck and Pagoda Burrs}

Pentangle＇s Lunatic puzzle，also shown，is a close relative of the Chuck family．

\(\square\)
Ide Aitekruse Puzzle and Variants

1890，William Altekuse patented（430502）an interlocking puzzle now known as the Altekruse Puzzle．You can read about the Alterruse puzzle







\(\qquad\)
\(\qquad\)




路



27 и3 Here is a wooden Kumiki Trolley by Shackman：
wis．
Here is a wooden Kumiki Trolley by Shackman：


\footnotetext{
都
}









\(\square\)



.


\title{

}
-

My copy is made from Padauk wood．








隹

These are members of the＂Quad Squad＂family of burrs with interchangeable pieces，from Viktor Genel．．．


Tubular Burr Box（aka Space Invaders），designed by Ronald Kint－Bruynseels．This instance is pretty small，at 36 mm ．It＇s made from
These are members of the＂Quad Squad＂family of burrs winterchangeable pieces，from＿her ere

Knot Mass 36，designed by Oskar van Deventer．This instance is pretty
small，at 36 mm ．It＇s made from a 5 －ply maple core／maple－top hardwood laminate

small，at 36 mm ．It＇s made from a 5 －ply maple core／maple－top


From Pavan＇s，a Rojo




嘘

\(\qquad\)

\(\qquad\)

This is notable because a copy sold for \(\$ 11,111\) in one of Nick Baxter＇s



William Waite＇s Stellar Burr





Quadrocube－Viktor Genel


Easy Livin＇designed by Ronald Kint－Bruynseels
Purchased from Bernhard Schweitzer at NY PP 2008 auctions！
\(\square\)

．

噱


路
．

\author{

}
．
－
\(\qquad\)
．

－
－



Ares）













\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline
\end{tabular}























Rob's Puzzle Page - Interlocking Puzzles

\footnotetext{


}




\begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular} \begin{tabular}{lll} 
Rob's Puzzle Page - Interlocking Puzzles \\
\hline
\end{tabular}


Via the Renegadepuzzlers forum，I learned about five inexpensive wooden puzzles produced under the label＂Confusion Contemporary Puzzles＂by The Lagoon Group．I purchased mine at Mind Games in the UK．




A non－tradition Along Eyckma A non－traditional 18－piece burr， from the French online puzzle shop Arteludes．com run by Jean－Baptiste Jacquin and Maurice Vigouroux． Ishino shows the pieces，and indicates Phelan is level Made by Eric Fuller，from Yellowheart



Trilogy
aka＂Three Open Windows＂ （made by Eric Fuller） Designed by Tom Jolly



\(\qquad\)
\(\qquad\)


\(\qquad\)
，

．




．
號
，都


\(\qquad\) －

\begin{abstract}
;
\end{abstract}





者

\footnotetext{

}

Scott T. Peterson is a talented craftsman who produces high-quality limited editions of puzzles in fine woods. See his website polyhedralpuzzles.com; and info at CubicDissection. Scott made a few instances of my 2 N's Cube design. Scott has devised an attractive coloring scheme for the cube and made me the examples shown below -
Scott made a few instances of my \(\mathbf{~} \mathbf{~ N}\) 's Cube design. Scott has devised an attractive coloring scheme for the cube and made me the example
the



\section*{Interlocking Poly-cube Assemblies}




\author{
A vintage interlocking burr.
}

\title{

}

George Miller made this version of Frans de Vreugd's "Extreme Torture" Thinkfun now offers an inexpensive and colorful version of the Extreme separated board burr. It takes 28 moves to free the first piece and then 21 more to free the second piece! Here is a link to the solution on George Miller's site. 6 -board burrs.
step-by-step reversible solution booklet.
You can see a solution on Richard Whiting's site.

Here is a set of burr-type plastic puzzles I bought in Japan - they are members of a "Family:"


The Dollar Tree store offered several puzzles in a series called " 3 Dimension" including:

\(\longrightarrow\)
-
"Stack Cubes" (A Kumiki Cube)
 -
-


The Arch Burr in aluminum, from Bits and Pieces. Designed by Oskar van Deventer.






The Tubular Burr by Derek Bosch. hased from Derek at IPP 29 in SF.

\(\square\)







\section*{-}








\(\qquad\)
\(\qquad\)
\(\qquad\)


\(\qquad\)







位


\author{

}












 Ma nd
 Ma nd

Waite＇s Wonder
A \(4 \times 4 \times 4\) cube made of only five pieces that fit together nicely and


－


t

\section*{}

\(\qquad\)


\(\qquad\)

\(\square\)


，

都都



－


\author{

}
\(\qquad\)
\(\square\)
\(\qquad\)

\(\qquad\)


This beautiful puzzle called the Twelve Piece Box lies on the boundary between a non-traditional burr and a polycube assembly. The little central cube has a secret, too.









This is Richard＇s small instance of Tom Jolly＇s Twist the Night Away．It is a great design that requires piece rotations to solve．I had fun solving Tom＇s puzzle at IPP29 in San Fransisco，but I missed out on Eric Fuller＇s wooden limited edition of them，so it＇s nice to be able to have an instance of this design，and an inexpensive one at that．It did take a lot of sanding of the pieces to make this one work，though









\(\qquad\)



Mochalov Cube 2006


Mochlou Cube 2006


\footnotetext{

}






\(\qquad\)

\title{

}
























n


Cube-and-Plank



Black and White by Kubi Games Purchased from GPP.
 Purchased from Pentangle
I really like this one - six different pieces loosely interlock. Each consists of a plank and two or more half-cubes attached in variou orientations. They can be assembled using logical deduction.

Polyhedral Assemblies


I am the proud owner of Corner Cube \#28 by Lee Krasnow.
It has six dissimilar pieces which assemble only one way. It is not easy to find the sliding axis to disassemble the puzzle! My instance is made from beautifully figured Tulipwood, Brazilian Kingwood, Cocobolo, and Bocote. I bought this directly from Lee in 2003.

One of my favorites is this "Ribbon Keyvos" made for me by Michael Toulouzas of Greece:


Bois de Rose, Wenge, and Mahogany


It's not easy to find the right slide...


Designs by Stewart Coffin


I've managed to acquire a few puzzles designed by Stewart Coffin. Some are originals bearing his mark "STC" while the rest are copies of his designs made by other skilled woodworkers.
Based on the compendium called Ap-Art, written by Stewart and produced by John Rausch, I put together the diagram below which is my attempt at showing a "family tree" of Stewart's interlocking puzzle designs.



 Rob＇s Puzzle Page－Interlocking Puzzles
CTn． 42 us
76


\section*{}



\section*{}

\section*{}
\(\qquad\)


號


\footnotetext{
蹅
}

耍



Rob's Puzzle Page - Interlocking Puzzles
CTo. 47 us 76
Rob's Puzzle Page - Interlocking Puzzles


Chersise

Goetz (Philos)
Mag-Nif 1974
This is my catch-all group for interlocking puzzles made of pieces and/or forming shapes that aren't geometrically easily described. Some are figural representations of various animals or objects, while many are abstract

I'll start with a beautiful spherical puzzle called the O. S. M. Ball, designed by Jakub Dvorak of the Czech Republic. I purchased this from Bernhard Schweitzer at IPP28 in Prague. Eight pieces. The first and second moves

These are from Interlocking Puzzles. Some were designed and/or made by Wayne Daniel. All of these puzzles are very well made and \(\rightarrow 2\)



 





都





very nicely finished．
Vaclav Obsivac（aka＂Vinco 1 ．
I have acquired several，some purchased from pu
very nicely finished．
Vaclav Obsivac（aka＂Vinco 1 ．
I have acquired several，some purchased from pu



Cals finished．
Vaclav Obsivac（aka＂Vinco＂），makes wonderful wooden puzzles．
have acquired several，some purchased from puzzlemasterca，others from Cleverwood or directly from Vaclav．
Madauk
Maple
Vicely finished．
Vaclav Obsivac（aka＂Vinco＂），makes wonderful wooden puzzles．
I have acquired several，some purchased from puzzlemasterc．a，others from Cleverwood or directly from Vaclav．
Padauk
Maple me this has been the most difficicult of the three truncated cubes．



Obsivac（aka＂Vinco＂），makes wonderful wooden puzzles．



0






\begin{abstract}

\end{abstract}
\(+2\)

都



I have acquired several，some purchased from puzzlemaster．ca，others from Cleverwood or directly from vaclav．
\(\qquad\)
\(\qquad\)





－

\footnotetext{


}

\title{
號
}



\(\qquad\)
－
\(\qquad\)
\(\square\)
\(\qquad\)
 \(\square\)








 they formed the New York World's Fair Corporation and established an office on one of the higher floors of the new Empire State Building, electing Grover Whaled the President of the organization." The 1939 New York

\footnotetext{

}





\(=\square^{\circ}\)

\(\qquad\)


.


\footnotetext{

}




\(\qquad\)
\(\qquad\)


\author{
都
}

\(\qquad\)
號























\(\qquad\)
蕅

都
范

and



\(+\)

\section*{}


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)



\(\qquad\)
\(\qquad\)


Rob's Puzzle Page - Interlocking Puzzles




\section*{}

\author{

}

\author{
號
}
\(\qquad\)



Drill（Peugeot France）
The pieces of this puzzle can sometimes get wedged very tightly together．I found an image of instructions
don＇t break yours trying to pry it apart！The bit／chuck comes out first，then the handle，then the top front
don＇t break yours trying to pry it apart！The bit／chuck comes out first，then the handle，then the top front

\[
\square
\]
－




Drill（Peugeot France）\(\quad\) ．\(\quad\) ．


\author{
，
}
嘘 
din 1951 Johnson Clown Puzzle Ad in 1951 Johnson Smith Catalog



Keychain Slipper

Cruise Ship keychain puzzle


Airplane keychain puzzle
Crises sip teychain puzzle



－
？


號


Canon keychain puzzle


\author{

}

\author{

}


相



\author{

}

\section*{}
．
－









 It has six pieces and assembly requires several pieces to be moved back and forth in sequence,

-






The Puzzle Sculptures of Miguel Berrocal

The Spanish sculptor Miguel Berrocal has produced many wonderful artworks, including puzzle sculptures coveted by collectors. Berrocal was born in Malaga, Spain, in 1933, and died in 2006. He was married to Princess Cristina, the grand-daughter of the last King of Portugal. He presided over a 200 -employee foundry in Negrar and referred to himself jokingly as the "boss of the sculptor's Mafia."

Probably the first time I heard of the puzzle sculptures of Miguel Berrocal was upon reading about them in one of Martin Gardner's columns in Scientific American. (Gardner discusses them in Chapter 18 of his book Penrose Tiles to Trapdoor Ciphers.) In college I had occasion to visit a friend - she was a foreign exchange student staying with an American family (hi Fariba!). The family owned a Berrocal Mini-David and that was my first
opportunity to try one of the puzzle sculptures of Miguel Berrocal.
Berrocal made six sculptures in his "Mini" series, and offered them as limited edition "multiples." They include:
opportunity to try one of the puzzle sculptures of Miguel Berrocal.
Berrocal made six sculptures in his "Mini" series, and offered them as limited edition "multiples." They include:
\(\bullet\) Mini-David \(\quad \bullet\) Portrait de Michele
- Mini-Cariatide \(\quad\) - Mini-Zoraida

Mini-Zoraida

\[
\underline{\text { James Strayer has quite a collection of Berrocals, as does John Rausch. }}
\]


．
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)



```


[^0]: I bought this plastic burr in Japan．I believe it was made by Tenyo．
 It is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 This burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 has no holes，and comes apart in one move into two 3－piece halves．
 This might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 Puzzles－How to Make and Solve Them，1942，p．86）． I bought this plastic burr in Japan．I believe it was made by Tenyo．
 It is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 This burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 has no holes，and comes apart in one move into two 3－piece halves．
 This might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 Puzzles－How to Make and Solve Them，1942，p．86）． I bought this plastic burr in Japan．I believe it was made by Tenyo．
 It is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 This burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 has no holes，and comes apart in one move into two 3－piece halves．
 This might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 Puzzles－How to Make and Solve Them，1942，p．86）． I bought this plastic burr in Japan．I believe it was made by Tenyo．
 It is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 This burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 has no holes，and comes apart in one move into two 3－piece halves．
 This might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 Puzzles－How to Make and Solve Them，1942，p．86）． I bought this plastic burr in Japan．I believe it was made by Tenyo．
 It is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 This burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 has no holes，and comes apart in one move into two 3－piece halves．
 This might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 Puzzles－How to Make and Solve Them，1942，p．86）． I bought this plastic burr in Japan．I believe it was made by Tenyo．
 It is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 This burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 has no holes，and comes apart in one move into two 3－piece halves．
 This might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 Puzzles－How to Make and Solve Them，1942，p．86）． bought this plastic burr in Japan．I believe it was made by Tenyo．
 is number 4 in a＂Family＂of burrs－this one is called＂Brother．＂
 his burr uses six general pieces： $463,564,760,909,927,1016$ ．It
 s no holes，and comes apart in one move into two 3－piece halves．
 is might be \＃72 in Filipiak＇s list（c．f．Anthony S．Filipiak，10o
 uzzles－How to Make and Solve Them，1942，p．86）．

