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These findings are significant because of
the growing interest in the mechanisms that
underlie the formation of episodic memory.
Episodic memory is memory for events6,
each of which occurs in a unique setting of
space and time. As such, it can be distin-
guished from semantic memory, which is
memory for facts, or ‘knowledge’. Episodic
memory is disproportionately affected in
some types of amnesia, such as that seen in
Alzheimer’s dementia, and it is thought to
depend on the hippocampus7, an important
structure for spatial memory in both birds
and mammals. To store an episodic memory,
some method is needed for temporally
ordering the sequence of happenings that
make up an event. Perhaps episodes can be
temporally ordered in the episodic memory
of non-humans, as well as humans. In this
light, the finding that animals as different

from us as birds possess a mechanism for
representing spatiotemporal events is enor-
mously important, and could be a big step
towards understanding how space, time and
events are represented and remembered in
the vertebrate brain.
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Dame Kathleen Ollerenshaw, one of
England’s national treasures, has
solved a long-standing, extremely

difficult problem involving the construction
and enumeration of a certain type of magic
square. The solution comes in a book* 
written with David Brée.

First, some background on magic
squares, and their hierarchy of perfection.
For many centuries, mathematicians —
especially those concerned with combina-
torics — have been challenged by magic
squares. These are arrangements of n2 dis-
tinct integers in an n2n array such that each
row, column and main diagonal has the same
sum. The sum is called the magic constant,
and n is called the square’s order. Traditional
magic squares are made with consecutive
integers starting with 0 or 1. If it starts with 
0 it can be changed to a square starting with 1
simply by adding 1 to each cell.

No order-2 square is possible. The order-
3 square (Fig. 1) barely exists. Why? Because
there are just eight different triplets of dis-
tinct digits from 1 to 9 that add up to 15, the
square’s constant. Each triplet appears as one
of the square’s eight straight lines of three
numbers. The pattern is unique — except for
rotations and mirror reflections, which are
only trivially different.

This little gem of combinatorial number
theory was called the lo shu in ancient China,
meaning ‘Lo River writing’. Legend has it that
in the 23rd century BC, a mythical King Yu saw
the pattern on the back of a sacred turtle in the
River Lo. (Modern historians, however, find

no evidence that the pattern was known
before the fourth or fifth century BC.) The
Chinese identify it with their familiar yin-
yang circle. The even digits, here shown shad-
ed, are linked to the dark yin; the Greek cross
of odd digits is linked to the light yang. For
centuries the lo shu has been used as a charm
on jewellery and other objects. Today, large
passenger ships often feature the lo shu on
their main deck as a pattern for the game of
shuffleboard. 

At order 4, the number of magic squares
jumps to 880. Among them is a special subset
of 48 squares called pandiagonal, which have
three amazing properties. This is illustrated
by the example in Fig. 2, whose constant is 30.

First, each broken diagonal also adds up
to 30. The sequences 0, 3, 15, 12 and 7, 13, 8, 2
are examples. This can be expressed in
another way: imagine an endless array of this
square placed side-by-side in all directions to
make a wallpaper pattern. Then every 424
square drawn on the pattern will also be a
pandiagonal magic square — in other words,
every straight line of four numbers will add
up to 30. Second, every 222 square on the
wallpaper also adds up to 30. Third, along
every diagonal, any two cells separated by
one cell add up to 15.

In general, a magic square is called pan-
diagonal if all its broken diagonals add up to
the magic constant. Such squares can be con-
structed of any odd order above three and of
any order that is a multiple of four. If a pan-
diagonal square also has similar properties to
the order-4 pandiagonals, it is called ‘most
perfect’: for example, the most-perfect
order-8 square in Fig. 3 has a magic constant
of 252, and its 222 sub-squares add up to
126, and any two numbers that are n/2 = 4
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100 YEARS AGO
Our present knowledge of the theory of
errors receives an interesting addition at
the hands of M. Charles Lagrange in the
form of a contribution to the Bulletin de
l’Académie royale de Belgique (vol. xxxv.
part 6). Without going into details of a
purely mathematical nature, certain of M.
Lagrange’s conclusions appear to be
sufficiently important to be worth noticing.
In taking the arithmetic mean of a number
of observations as the most probable
value of the observed quantity, common
sense suggests that any observations
differing very widely from the rest should
be left out of count as being purely
accidental, and thus likely to vitiate the
result. But as it is impossible to draw the
line from theoretical considerations
between values retained and values
omitted, any such omission would
necessarily be unjustifiable. This
discrepancy between theory and common
sense is, to a large extent, reconciled by
M. Lagrange’s “theory of recurring
means.” According to this theory, the
weight to be assigned to any observation
is inversely proportional to the square of
the error of the observed value relative to
the most probable value. … The weighted
mean is then taken as a second
approximation to the most probable value.
This mean determines a fresh series of
weights to be assigned to the
observations by which a new weighted
mean … is found, and so on ... These
successive means are called by M.
Lagrange “recurring means,” and by their
use the effects of sporadic errors are, to
all practical purposes, eliminated, since
the weight assigned to the corresponding
observations soon becomes relatively
small.
From Nature 15 September 1898.

50 YEARS AGO
In the possession of the Science
Museum, London, there are six beautifully
engraved buttons, classified as diffraction
gratings, which are still regarded as
masterpieces. They were the work of Sir
John Barton, deputy comptroller of the
Royal Mint in the early part of the
nineteenth century, about whom little is
known personally, but who must have
been an ingenious inventor and capable
engineer, for in 1806 he invented a
differential screw measuring instrument
capable of measuring 10–5 inch. 
From Nature 18 September 1948.

*Most-Perfect Pandiagonal Magic Squares: Their Construction and

Enumeration. Due for publication on 1 October by The Institute of

Mathematics and its Applications, Catherine Richards House, 

16 Nelson Street, Southend-on-Sea, Essex SS11EF, UK.



Nature © Macmillan Publishers Ltd 1998

8

to experience. That this should have been
afforded to someone who had, with a few
exceptions, been out of active mathematics
research for over 40 years will, I hope, encour-
age others. The delight of discovery is not a
privilege reserved solely for the young.”
Martin Gardner is at 3001 Chestnut Road,
Hendersonville, North Carolina 28792, USA.

cells apart add up to n211 = 63.
Although all order-4 pandiagonals have

been known to be most perfect for three 
centuries, little has been known about most-
perfect squares of higher orders. There was
no method of constructing them all, or even
of determining the number of squares of a
given order.

These questions are finally settled by
Kathleen Ollerenshaw and David Brée in
their new book. The authors have devised 
a method for constructing all the most-
perfect squares of any order, and a way of 
calculating their number.

Unlike the ordinary pandiagonals, there
are no most-perfect squares with odd order,
so the only possible orders are multiples of
four. At each leap in order, the number of
essentially different most-perfect squares
increases rapidly: from 48 squares of order
four, to 368,640 of order eight, to 2.22953
21010 of order 12. When you reach order 36,
the number is 2.7675421044 — around a
thousand times the number of pico-pico-
seconds since the Big Bang.  

This solution of one of the most frustrat-
ing problems in magic-square theory is an
achievement that would have been remark-
able for a mathematician of any age. In Dame
Kathleen’s case it is even more remarkable,

because she was 85 when she and Brée finally
proved the conjectures she had earlier made.
In her own words, “The manner in which each
successive application of the properties of the
binomial coefficients that characterize the
Pascal triangle led to the solution will always
remain one of the most magical mathematical
revelations that I have been fortunate enough

news and views

NATURE | VOL 395 | 17 SEPTEMBER 1998 217

Figure 2 A 424 magic square that is
pandiagonal — the broken diagonals also add up
to its magic constant of 30.

Figure 3 A most-perfect square of order eight. Its rows, columns, diagonals and broken diagonals all
add up to 252, and all 222 sub-squares add up to 126. Kathleen Ollerenshaw and David Brée have
found a way to construct most-perfect pandiagonal magic squares of any order.
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“Now this bell tolling softly for another, says to
me, Thou must die.”

The 1623 Meditation 17 by the English
metaphysical poet John Donne was
probably inspired by the church bells

that tolled to announce death by the plague.
Death in this and many other infectious 
diseases typically follows septic shock, often
caused by so-called Gram-negative bacteria.
The path that leads from these organisms to
septic shock has been under investigation for
over a century, and, on page 284 of this issue,
Yang et al.1 report that a cell-surface receptor,
Toll-like receptor 2 (TLR2), may be part of
the long-awaited solution to the puzzle.

In 1884, the Danish physician Christian

Gram discovered that the outer membranes
of bacteria may be classified as Gram nega-
tive or Gram positive, based on the ability of
acetone/alcohol to decolorize cells stained
with Gram’s iodine and crystal violet. Gram-
negative organisms contain a complex 
glycolipid in their outer membranes, known
as lipopolysaccharide (LPS) or endotoxin. In
picogram quantities, this substance can
induce mammalian white blood cells to
secrete cytokines which, if left unchecked,
can lead to fever, coagulation defects, lung
dysfunction, kidney failure and circulatory
collapse.

How are trace quantities of this glycolipid
recognized, and the signals necessary for the
production of toxic cytokines transduced?

Bacterial infection

For whom the bell tolls
Craig Gerard

Figure 1 Lo shu, the only 323 magic square.


